K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)

Dấu "=" xảy ra <=> a = b = c

9 tháng 11 2015

ta có (a+b+c ) 2   = a2+b2+c2+2(ab+bc+ac)

Mà  a2+b2+c>/ ab+bc+ac     ( Bạn tự CM: nhân 2 vế với 2 rồi chuyển vế dưa về HDT)

=>  (a+b+c ) 2   = 3(ab+bc+ac)   => \(a+b+c\ge3\frac{ab+bc+ca}{a+b+c}\)mà a+b+c=abc

\(a+b+c\ge3\frac{ab+bc+ca}{abc}\)

\(a+b+c\ge3.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

24 tháng 10 2017

<=> √a+1+√b+1+√c+1< √12.25

<=>a+1+b+1+c+1< 12.25

<=>4<12.25(dpcm)

hay √2 <3.5

25 tháng 10 2017

Áp dụng BĐT Bunyakovsky, ta có:

\(\left(a+1+b+1+c+1\right)3\ge\left(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\right)^2\)

\(\Rightarrow\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le\sqrt{12}< 3,5\)

23 tháng 12 2016

Khi ab>=1 thì1/(1+a^2)+1/(1+b^2)>=2/(1+ab)

25 tháng 4 2018

\(\frac{1}{\left(1+a^2\right)}+\frac{1}{\left(1+b^2\right)}\ge\frac{2}{\left(1+ab\right)}\)

\(\Leftrightarrow\left(1+b^2\right)\left(1+ab\right)+\left(1+a^2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)

\(\Leftrightarrow1+b^2+ab+ab^2+1+a^2+ab+a^3b-2\left(1+a^2+b^2+a^2b^2\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2+2ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\left(đ\text{ieu nay khong the x ra}\right)\)

\(\text{Dau }"="\Leftrightarrow a=b=c=1\)

1)Cho a,b,c >0

Chứng minh  bc/a^2(b+c) + ca/b^2(c+a) +ab/c^2(a+b) > hoặc = 1/2(1/a+1/b+1/c)

2) Cho a,b,c>0 1/a + 1/b + 1/c =1

Chứng minh (b+c)/a^2 + (c+a)/b^2 + (a+b)/c^2 > hoặc = 2

Đọc tiếp...