Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì : \(2^3< 10\Rightarrow A< 10^{5835}\)
Suy ra \(a\le9\times5835=52515\). Suy ra \(b\le5+4\times9=41\)
Do đó , \(c\le4+9=13\)
Mặt khác \(A\equiv a\equiv b\equiv c\left(mod9\right)\). Vì \(2^3\equiv\left(-1\right)\left(mod9\right)\) nên \(A\equiv\left(-1\right)\left(mod9\right)\)
Vậy : \(c\equiv8\left(mod9\right)\) hay \(c=8\).
Vì \(2^3\equiv-1\left(mod9\right)\Rightarrow\left(2^3\right)^{3\cdot1945}\equiv-1\left(mod9\right)\)
Vậy \(\left(2^9\right)^{1945}\equiv9\left(mod9\right)\)
Kí hiệu S(m) là tổng các chữ số m
=> S(a); S(b) chia cho 9 cũng dư 8
Có: \(2^{13}=8192< 10^4\Rightarrow2^{130}< 10^{40}\)nên \(\hept{\begin{cases}2^{17420}< 10^{40\cdot134}\\\left(2^{13}\right)^6< 10^{24}\\2^7< 10^3\end{cases}}\)
Vậy \(\left(2^9\right)^{1945}=2^{17420+13\cdot6+7}< 10^{5391}\Rightarrow\left(2^9\right)^{5391}\)có không quá 5391 chữ số. Lại có:
\(a=S\left(\left(2^9\right)^{1945}\right)\le5391\cdot9=48519\)
\(b=S\left(a\right)\le3+9+9+9+9=39\)
\(c=S\left(b\right)\le12\)
\(\Rightarrow S\left(b\right)=8\)hay c=8
Vậy c=8
Bạn tự chứng minh \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà a+b+c=0
\(\Rightarrow a^3+b^3+c^3=3abc\)
\(S=\frac{a^2}{b\left(a+b\right)}+\frac{b^2}{c\left(b+c\right)}+\frac{c^2}{a\left(c+a\right)}\)
\(=\frac{a^2}{-bc}+\frac{b^2}{-ca}+\frac{c^2}{-ab}\)
\(=\frac{-\left(a^3+b^3+c^3\right)}{abc}\)
\(=\frac{-3abc}{abc}=-3\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{\left(2b+c-a\right)+\left(2c-b+a\right)+\left(2a+b-c\right)}{a+b+c}\)\(=\frac{2a+2c+2a}{a+b+c}=2\)
vậy : \(\frac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow2b+c-3a=0\Rightarrow3a-2c=c\Rightarrow3a-c=2b\)
\(\frac{2c-b+a}{b}=2\Rightarrow2c-b+a=2b\Rightarrow2c+a-3b=0\Rightarrow3b-2c=a\Rightarrow3b-a=2c\)
\(\frac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\Rightarrow2a+b-3c=0\Rightarrow3c-2a=b\Rightarrow3c-b=2a\)
Vậy \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}=\frac{c.a.b}{2b.2c.2a}=\frac{1}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Do đó :
\(\frac{2b+c-a}{a}=2\)\(\Rightarrow\)\(c=3a-2b\)\(;\)\(2b=3a-c\)\(\left(1\right)\)
\(\frac{2c-b+a}{b}=2\)\(\Rightarrow\)\(a=3b-2c\)\(;\)\(2c=3b-a\)\(\left(2\right)\)
\(\frac{2a+b-c}{c}=2\)\(\Rightarrow\)\(b=3c-2a\)\(;\)\(2a=3c-b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\) ta được :
\(P=\frac{c.a.b}{2b.2c.2a}=\frac{abc}{8abc}=\frac{1}{8}\)
Vậy \(P=\frac{1}{8}\)
Chúc bạn học tốt ~
Phùng Minh Quân sai nha nếu a+b+c = 0 thì a+b+c / 2(a+b+c) thì nó không bằng 1/2 đc mà nó bằng 0
\(\left|a-b\right|\ge c\)
\(\Rightarrow S=\left|a-b\right|-c-a-b+c\)
\(S=\left|a-b\right|-a-b\)
+)Xét \(a\ge b\)
\(\Rightarrow S=a-b-a-b\)
\(S=-2b⋮2\left(1\right)\)
+)Xét \(a< b\)
\(\Rightarrow S=b-a-a-b\)
\(S=-2a⋮2\left(2\right)\)
Từ (1) và (2) \(\Rightarrowđpcm\)
a ) \(A=\frac{ax^2\left(a-x\right)-a^2x\left(x-a\right)}{3a^2-3x^2}=\frac{ax\left(a-x\right)\left(a+x\right)}{3\left(a-x\right)\left(a+x\right)}=\frac{ax}{3}\)
Thay \(a=\frac{1}{2};x=-3\), ta có :
\(A=\frac{\frac{1}{2}.-3}{3}=-\frac{1}{2}\)
b ) \(B=\frac{\left(ab+bc+cd+da\right)abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-d\right)}=\frac{\left[\left(ab+ad\right)+\left(bc+cd\right)\right]abcd}{ca+cb+da+db+ba-bd-ca+cd}\)
\(=\frac{\left[a\left(b+d\right)+c\left(b+d\right)\right]abcd}{ba+da+cb+cd}=\frac{\left(b+d\right)\left(a+c\right)abcd}{\left(b+d\right)\left(a+c\right)}=abcd\)
Thay \(a=-3;b=-4;c=2;d=3\), ta có :
\(B=\left(-3\right).\left(-4\right).2.3=72\)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Xin lỗi nha : Chỗ có 2 dấu cộng là mình viết nhầm đó
chỉ có 1 dấu thôi