K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

\(M=\frac{a^2}{b-1}+\frac{b^2}{a-1}=\frac{a^2}{b-1}+4\left(b-1\right)+\frac{b^2}{a^2-1}+4\left(a-1\right)-4a-4b+8\)

\(\ge2\sqrt{\frac{a^2}{b-1}\cdot4\left(b-1\right)}+2\sqrt{\frac{b^2}{a-1}\cdot4\left(a-1\right)}-4a-4b+8=4a+4b-4a-4b+8=8\) (AM-GM)

Dấu "=" xảy ra <=> a=b=2

20 tháng 2 2018

Xét : a^2/b-1 + 4.(b-1) >= \(2\sqrt{\frac{a^2}{b-1}.4.\left(b-1\right)}\) = 4a

Tương tự : b^2/a-1 + 4.(a-1) >= 4b

<=> G + 4.(a-1)+(4.(b-1) >= 4a+4b

<=> G + 4a+4b-8 >= 4a+4b

<=> G >= 4a+4b-4a-4b+8 = 8

Dấu "=" xảy ra <=> a^2/b-1 = 4.(b-1) và b^2/a-1 = 4.(a-1) <=> a=b=2

Vậy GTNN của G = 8 <=> a=b=2

Tk mk nha

đúng rồi 

đúng

đúng

100000000000000000000000000000000000000000000000000%

23 tháng 5 2019

\(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge2\sqrt{\frac{a^2b^2}{\left(b-1\right)\left(a-1\right)}}=2\sqrt{\frac{a^2}{a-1}.\frac{b^2}{b-1}}\)

Ta có:

\(\frac{a^2}{a-1}=\frac{a^2-4a+4+4a-4}{a-1}=\frac{\left(a-2\right)^2}{a-1}+4\ge4\)

\(\frac{b^2}{b-1}=\frac{b^2-4b+4+4b-4}{b-1}=\frac{\left(b-2\right)^2}{b-1}+4\ge4\)

\(\Rightarrow A\ge8."="\Leftrightarrow a=b=2\)

NV
15 tháng 5 2019

\(T=\sum\frac{a}{1+9b^2}=\sum\frac{a\left(1+9b^2\right)-9ab^2}{1+9b^2}=\sum\left(a-\frac{9ab^2}{1+9b^2}\right)\ge\sum\left(a-\frac{9ab^2}{6b}\right)=\sum\left(a-\frac{3}{2}ab\right)\)

\(T\ge a+b+c-\frac{3}{2}\left(ab+ac+bc\right)\ge a+b+c-\frac{1}{2}\left(a+b+c\right)^2=\frac{1}{2}\)

\(\Rightarrow T_{min}=\frac{1}{2}\) khi \(a=b=c=\frac{1}{3}\)

26 tháng 5 2018

\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\frac{\left(a-1\right)^2}{4a}\left(\frac{\left(\sqrt{a}-1-\sqrt{a}-1\right)\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right)\)

\(=\frac{\left(a-1\right)\left(-2\right)2\sqrt{a}}{4a}=-\frac{\left(a-1\right)}{\sqrt{a}}\)

26 tháng 5 2018

h di roi t se trl

4 tháng 2 2020

\(S=\left(a^2+b^2+c^2+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}\right)+\frac{3}{4a}+\frac{3}{4b}+\frac{3}{4c}\)

\(\ge9\sqrt[9]{a^2b^2c^2.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge\frac{9}{4}+9.\frac{1}{\sqrt[3]{abc}}\ge\frac{9}{4}+\frac{9}{4}.\frac{1}{\frac{a+b+c}{3}}\ge\frac{9}{4}+\frac{9}{4}.2=\frac{27}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)

Vậy \(Min_S=\frac{27}{4}\)

11 tháng 6 2019

Ta có \(\left(x-2\right)^2\ge0\forall x\Leftrightarrow x^2-4x+4\ge0\Leftrightarrow x^2\ge4\left(x-1\right).\)

\(\Rightarrow\frac{x^2}{x-1}\ge4\)(với x>1) Dấu '=' xảy ra khi x-2=0   <=> x=2 (TMĐK)

Áp dụng bất đẳng thức trên cho a,b,c >1 ta được 

\(\frac{a^2}{a-1}\ge4\);  \(\frac{2b^2}{b-1}\ge2.4=8\);   \(\frac{2017c^2}{c-1}\ge2017.4=8068\)

Suy ra \(M=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{2017c^2}{c-1}\ge4+8+8068=8080\)

Vậy giá trị nhỏ nhất của M=8080 khi a=b=c=2

1 tháng 9 2020

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{a}{1+b}+\frac{4}{9}.a\left(1+b\right)\ge2\sqrt{\frac{a.4.a.\left(1+b\right)}{\left(1+b\right)9}}=2\sqrt{\frac{4a^2}{3^2}}=\frac{4a}{3}\)

\(\frac{b}{1+a}+\frac{4}{9}.b\left(1+a\right)\ge2\sqrt{\frac{b.4.b.\left(1+a\right)}{\left(1+a\right)9}}=2\sqrt{\frac{2^2b^2}{3^2}}=\frac{4b}{3}\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\frac{a}{1+b}+\frac{b}{1+a}+\frac{4}{9}.a\left(1+b\right)+\frac{4}{9}.b\left(1+a\right)\ge\frac{4a}{3}+\frac{4b}{3}\)

\(< =>\frac{a}{1+b}+\frac{b}{1+a}\ge\frac{4a}{3}-\frac{4}{9}\left(a+ab\right)-\frac{4}{9}\left(b+ab\right)+\frac{4b}{3}\)

\(< =>\frac{a}{1+b}+\frac{b}{1+a}\ge\frac{8a}{9}+\frac{8b}{9}-\frac{4}{9}ab-\frac{4}{9}ab\)

\(< =>S\ge\frac{1}{a+b}+\frac{8}{9}\left(a+b\right)-\frac{8}{9}ab=\left(\frac{1}{a+b}+a+b\right)-\frac{a+b+8ab}{9}\)

\(< =>S\ge2-\frac{a+b+8ab}{9}\)

Do \(4ab\le\left(a+b\right)^2\le1< =>a+b+8ab\le3\)

Khi đó ta được : \(S\ge2-\frac{3}{9}=2-\frac{1}{3}=\frac{5}{3}\).Đẳng thức xảy ra \(< =>a=b=\frac{1}{2}\)

Vậy GTNN của \(S=\frac{5}{3}\)đạt được khi \(a=b=\frac{1}{2}\)

25 tháng 9 2019

trả lời lẹ cho tui cấy