K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3\ge a^2b+ab^2\)

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng )

23 tháng 11 2019

BĐT \(\Leftrightarrow\left(\frac{a}{b}\right)^3+1\ge\frac{a}{b}\left(\frac{a}{b}+1\right)\) (chia hai vế cho b3 > 0)

Đặt \(\frac{a}{b}=t>0\). Ta cần chứng minh \(t^3+1\ge t\left(t+1\right)\Leftrightarrow\left(t-1\right)^2\left(t+1\right)\ge0\)

P/s: Làm kiểu khác cho nó lạ xíu:D

NV
22 tháng 11 2019

\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

10 tháng 5 2017

\(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{2}\ge\frac{\left(a+b\right)^3}{8}\)

\(\Leftrightarrow\frac{a^2-ab+b^2}{2}\ge\frac{\left(a+b\right)^2}{8}\)

\(\Leftrightarrow\frac{a^2-ab+b^2}{2}-\frac{a^2+2ab+b^2}{8}\ge0\)

\(\Leftrightarrow\frac{4a^2-4ab+4b^2-a^2-2ab-b^2}{8}\ge0\)

\(\Leftrightarrow\frac{3a^2-6ab+3b^2}{8}\ge0\)

\(\Leftrightarrow\frac{3\left(a-b\right)^2}{8}\ge0\) (luôn đúng)

Vậy \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)

16 tháng 4 2020

*học ngu chỉ làm được câu b. lười quá nên làm tắt*

Biến đổi thành

4(a3+b3)-(a+b)3+4(a3+b3)-(b+c)3+4(c3+a3)-(c+a)3 >=0

xét 4(a3+b3)-(a+b)=(a+b)[4(a2-ab+b2)-(a+b)2]

                                =3(a+b)(a-b)2 >=0

tương tự với \(\hept{\begin{cases}4\left(b^3+c^3\right)-\left(b+c\right)^3\\4\left(c^3+a^2\right)-\left(a+c\right)^3\end{cases}}\)

=> đpcm

đẳng thức xảy ra khi a=b=c

29 tháng 4 2020

Ta có : \(4\left(a^3+b^3\right)=4a^3+4b^3\)(1)

\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^2\)(2)

Từ 1 và 2 \(< =>3a^3+3b^3\ge3a^2b+3ab^2\)

\(< =>a^3+b^3\ge a^2b+ab^2\)

\(< =>a+b\ge b+a\left(đpcm\right)\)

Ko chắc lắm vì t ms lớp 6 :((

23 tháng 9 2016

a/ Ta có : \(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\Leftrightarrow2\left(a^3+b^3\right)\ge a^3+b^3+ab^2+a^2b\)

\(\Leftrightarrow a^3+b^3\ge a^2b+ab^2\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Vậy bđt ban đầu được chứng minh.

b/ Đề sai

 

23 tháng 9 2016

Hoàng Lê Bảo Ngọc câu b em sửa lại đề chị làm jum em nhé 

\(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)

27 tháng 9 2020

a,Ta có:\(a^2+b^2\ge2ab\)

            \(a^2+c^2\ge2ac\)  

            \(b^2+c^2\ge2bc\)

Cộng theo từng về 3 bđt trên ta đc:

\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)

Xảy ra dấu đt khi \(a=b=c\)

b,\(a^3+b^3\ge ab\left(a+b\right)\)(chia cả 2 vế cho \(a+b>0\))

\(\Leftrightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)

Xảy ra dấu đẳng thức khi \(a=b\)

c,\(a^2+b^2+c^2\ge a\left(b+c\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\forall a,b,c\)

Xảy ra đẳng thức khi \(a=b=c=0\)

              

27 tháng 9 2020

Phần b mình tặng thêm một cách giải không dùng biến đổi tương đương: 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

Dấu bằng tại a=b

2 tháng 11 2019

\(a^3+a^3+b^3\ge3\sqrt[3]{a^6b^3}=3a^2b\)

\(b^3+b^3+a^3\ge3b^2a\)

\(\Rightarrow3\left(a^3+b^3\right)\ge3\left(a^2b+b^2a\right)\Leftrightarrow\left(a^3+b^3\right)\ge\left(a^2b+b^2a\right)\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)

16 tháng 5 2019

1 ) (a+b+c)^2 >= 3(ab+bc+ac)

<=> a^2 + b^2 + c^2 >= ab + bc + ac

<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ac

<=> a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + a^2 - 2ac + c^2 >= 0 

<=> (a - b)^2 + (b-c)^2 + (a-c)^2 >= 0 

( luôn đúng với mọi a ; b ; c )

( đpcm )

2 ) P =  \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}\)

AD BĐT Cô - si và BĐT phụ đã cmt ở trên  ta có : \(P\ge2.\frac{1}{3}+\frac{8.3.\left(ab+bc+ac\right)}{9\left(ab+bc+ac\right)}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

Dấu " = " xảy ra <=> a = b = c 

16 tháng 5 2019

Khôi Bùi : theo e ý 2 có thể đơn giản hóa vấn đề bằng cách đặt ẩn phụ

đặt \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}=t\left(t\ge3\right)\)

\(\Rightarrow P=t+\frac{1}{t}=\frac{t}{9}+\frac{1}{t}+\frac{8}{9}t\)

Áp dụng BĐT AM-GM ta có:

\(P\ge2.\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8}{9}t\ge\frac{2.1}{3}+\frac{8}{9}.3=\frac{10}{3}\)

Dấu " = " xảy ra <=> a=b

9 tháng 5 2019

Ta có a>0;b>0\(\Leftrightarrow\)\(\left(a+b\right)\left(a-b\right)^2\ge0\)(dấu '=' xảy ra khi a=b)\(\Leftrightarrow a^3+b^3-a^2b-ab^2\ge0\Leftrightarrow3a^3+3b^3-3a^2b-3ab^2\ge0\Leftrightarrow4a^3+4b^3\ge a^3+3a^2b+3ab^2+b^3\Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow8\left(a^3+b^3\right)\ge2\left(a+b\right)^3\Leftrightarrow\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)(đpcm)

12 tháng 4 2017

AM-GM ngược dấu như sau:

\(\dfrac{a^3}{a^2+ab+b^2}=a-\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\dfrac{ab\left(a+b\right)}{3ab}=\dfrac{2a-b}{3}\)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b^3}{b^2+bc+c^2}\ge\dfrac{2b-c}{3};\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{2c-a}{3}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a-b}{3}+\dfrac{2b-c}{3}+\dfrac{2c-a}{3}=\dfrac{a+b+c}{3}=VP\)

12 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+ac^2+ca^2}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

Dễ thấy :

\(a^{3}+b^{3}+c^{3}+ab(b+c)+bc(b+c)+ca(c+a)=(a^{2}+ b^{2}+c^{2})(a+b+c)\)

\(\Rightarrow VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)

Vậy cần chứng minh

\(\dfrac{a^2+b^2+c^2}{a+b+c}\ge\dfrac{a+b+c}{3}\Leftrightarrow\left(a+b+c\right)^2\ge3\left(a^2+b^2+c^2\right)\) (luôn đúng)