\(\frac{a}{b}\)+\(\frac{b}{c}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

Vì \(a,b,c>0\)\(\Rightarrow\frac{a}{b};\frac{b}{c};\frac{c}{a}>0\)nên áp dụng bđt Cauchy cho 3 số dương ta có 

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3.\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}=3.\sqrt[3]{1}=3\left(đpcm\right)\)

Vậy với \(a,b,c>0\)thì \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

8 tháng 8 2019

a, \(BĐT\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2-ab\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\ge0\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) (luôn đúng vì a,b>0)

Dấu "=" xảy ra <=> a=b

b, Áp dụng bđt câu a ta có: \(a^3+b^3+1\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

=>\(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}\)

Tương tự \(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(a+b+c\right)}\)

Cộng 3 bđt vế theo vế ta được:

\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=1\left(đpcm\right)\)

Dấu "=" xảy ra <=> a=b=c=1

7 tháng 8 2019

Hỏi đáp Toán

áp dụng bất đẳng thức cô-si ta có:

\(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2};a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge9\sqrt[3]{a^2b^2c^2.abc}=9abc\)

\(\frac{a^2+b^2+c^2}{3abc}\ge\frac{3}{a+b+c}\Rightarrow\frac{\left(a^2+b^2+c^2\right)^2}{3abc}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

áp dụng bất đẳng thức schwarts ta có:

\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

dấu "=" xảy ra khi a=b=c

3 tháng 1 2018

ko hieu

6 tháng 1 2018

Cần cù bù thông minh ( ͡° ͜ʖ ͡°)

\(BDT\Leftrightarrow\frac{a^3+abc}{b^2+c^2}-a+\frac{b^3+abc}{c^2+a^2}-b+\frac{c^3+abc}{a^2+b^2}-c\ge0\)

\(\Leftrightarrow\frac{a\left(a^2+bc-b^2-c^2\right)}{b^2+c^2}+\frac{b\left(b^2+ac-c^2-a^2\right)}{c^2+a^2}+\frac{c\left(c^2+ab-a^2-b^2\right)}{a^2+b^2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\frac{a\left(\left(a-b\right)\left(a+2b-c\right)-\left(c-a\right)\left(a+2c-b\right)\right)}{b^2+c^2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)\left(\frac{a\left(a+2b-c\right)}{b^2+c^2}-\frac{b\left(b+2a-c\right)}{a^2+c^2}\right)\right)\ge0\)

\(\LeftrightarrowΣ_{cyc}\left((a-b)^2\left(\frac{(a^3+b^3-c^3+3a^2b+3ab^2-a^2c-b^2c-abc+ac^2+bc^2)}{(a^2+c^2)(b^2+c^2)}\right)\right)\ge0\)

23 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

Tượng tự ta có \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)

\(\Rightarrow VT+\frac{3}{4}+\frac{a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Rightarrow VT\ge\frac{a+b+c}{2}-\frac{3}{4}\)(1) 

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{4}\)(2) 

Từ (1) và (2) 

\(\Rightarrow VT\ge\frac{3}{4}\)( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=1\)

26 tháng 6 2019

Bạn ơi! Đề thiếu rồi bạn nhé!