Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(------------------------\)
Từ bất đẳng thức cơ bản sau: \(a^2+b^2+c^2\ge ab+bc+ca\) thì ta rút ra một bất đăng thức mới có dạng như sau:
\(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=9\)
nên \(ab+bc+ca\le3\) \(\left(i\right)\)
\(---------------------\)
Ta có:
\(\frac{a+1}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b+ab}{2}\left(1\right)\)
Thiết lập tương tự các mối quan hệ như trên theo sơ đồ hoán vị \(b\rightarrow c\rightarrow a\) như sau:
\(\hept{\begin{cases}\frac{b+1}{c^2+1}\ge b+1-\frac{c+bc}{2}\left(2\right)\\\frac{c+1}{a^2+1}\ge c+1-\frac{a+ca}{2}\left(3\right)\end{cases}}\)
Từ \(\left(1\right);\left(2\right)\) và \(\left(3\right)\) với lưu ý đã chứng minh ở \(\left(i\right)\) suy ra \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}\ge\frac{3}{2}+3-\frac{3}{2}=3\)
Dấu bằng xảy ra khi và chỉ khi \(a=b=c=1\)
Em làm thử nhé!
Bài 1: \(A=\left[\frac{a^2}{b-1}+4\left(b-1\right)\right]+\left[\frac{b^2}{a-1}+4\left(a-1\right)\right]-4\left(a+b\right)+8\)
Cauchy vào là ra rồi ạ;)
Bài 2: Em chịu
2) Có: \(\sqrt{ab}\le\frac{a+b}{2}=1\); \(\sqrt{a}+\sqrt{b}=\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}\le\sqrt{2\left(a+b\right)}=2\)
\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}\ge\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3=\frac{a^2}{\sqrt{a}}+\frac{b^2}{\sqrt{b}}\)
\(\ge\frac{\left(a+b\right)^2}{\sqrt{a}+\sqrt{b}}\ge=\frac{2^2}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=1\)
Sửa lại đề là tìm Max nhé m.n
Ta có:
\(\frac{ab+bc+ca+6\left(a+b+c\right)+27}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)
\(\Leftrightarrow\frac{\left(b+3\right)\left(c+3\right)+\left(c+3\right)\left(a+3\right)+\left(a+3\right)\left(b+3\right)}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)
\(\Leftrightarrow\frac{5}{a+3}+\frac{5}{b+3}+\frac{5}{c+3}=3\Leftrightarrow\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}=0\)
Xét biểu thức:
\(\frac{a^2-4}{a^2-9}=\frac{\left(a-2\right)\left(a+2\right)}{\left(a-3\right)\left(a+3\right)}=\frac{a-2}{a+3}.\frac{a+2}{a-3}\)
tưởng tự:
\(\frac{b^2-4}{b^2-9}=\frac{b-2}{b+3}.\frac{b+2}{b-3},\frac{c^2-4}{c^2-9}=\frac{c-2}{c+3}.\frac{c+2}{c-3}\)
\(\Rightarrow\frac{a^2-4}{a^2-9}+\frac{b^2-4}{b^2-9}+\frac{c^2-4}{c^2-9}=\frac{a-2}{a+3}.\frac{a+2}{a-3}+\frac{b-2}{b+3}.\frac{b+2}{b-3}+\frac{c-2}{c+3}.\frac{c+2}{c-3}\)
Do vai trò của a và b và c như nhau nên ta giả sử
\(a\ge b\ge c\)
Khi đó ta có:
\(\frac{a-2}{a+3}\ge\frac{b-2}{b+3}\ge\frac{c-2}{c+3},\frac{a+2}{a-3}\le\frac{b+2}{b-3}\le\frac{c+2}{c-3}\)
Áp dụng bất đẳng thức chebyshev cho 2 bộ ngược chiều trên ta có
\(\frac{a-2}{a+3}.\frac{a+3}{a-2}+\frac{b-2}{b+3}.\frac{b+2}{b-3}+\frac{c-2}{c+3}.\frac{c+2}{c-3}\le\left(\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}\right).\left(\frac{a+2}{a-3}+\frac{b+2}{b-3}+\frac{c+2}{c-3}\right)\)
Mà \(\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}=0\)
\(\Rightarrow\frac{a^2-4}{a^2-9}+\frac{b^2-4}{b^2-9}+\frac{c^2-4}{c^2-9}\le0\)
\(\Rightarrow\frac{5}{a^2-9}+\frac{5}{b^2-9}+\frac{5}{c^2-9}\le-3\Rightarrow\frac{1}{a^2-9}+\frac{1}{b^2-9}+\frac{1}{c^2-9}\le\frac{-3}{5}\)
Dấu bằng xảy ra khi a=b=c=2
mn ơi giúp e