K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

Ta có : \(ad=bc\)

=> \(\frac{a}{c}=\frac{b}{d}\)

\(ADTCDTSBN,tađược\):
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)

= > \(\frac{a-b}{c-d}=\frac{a+b}{c+d}\)

=> \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\left(đpcm\right)\)

1 tháng 7 2015

a)Do b,d>0

\(\frac{a}{b}>\frac{c}{d}\Rightarrow\frac{a.d}{b.d}>\frac{c.b}{b.d}\Rightarrow a.d>b.c\)

b)Do b,d>0

=>\(ad>bc\Leftrightarrow\frac{ad}{bd}>\frac{bc}{bd}\Rightarrow\frac{a}{b}>\frac{c}{d}\)

6 tháng 11 2017

a) a/b=ad/bd

c/d=cb/db

mà a/b<c/d=>ad/bd<cb/bd=>ad<bc

b)ad<bc=>ad/bd<bc/bd=> a/b<c/d

21 tháng 6 2016

a)\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}.bd< \frac{c}{d}.bd\Rightarrow ad< cb\)(đpcm)

b)Ta có: 

  • ad<cd

=>ab+ad<ab+cd

=>a(b+d)<b(b+d)

=>\(\frac{a\left(b+d\right)}{b\left(b+d\right)}< \frac{b\left(a+c\right)}{b\left(b+d\right)}\)

=>\(\frac{a}{b}< \frac{a+c}{b+d}\)(1)

  •  ad<bc

=>ad+cd<bc+cd

=>d(a+c)<c(b+d)

=>\(\frac{d\left(a+c\right)}{d\left(b+d\right)}< \frac{c\left(b+d\right)}{d\left(b+d\right)}\)

=>\(\frac{a+c}{b+d}< \frac{c}{d}\)(2)

Từ (1) và (2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)(đpcm)

1 tháng 1 2018

Câu 1 : 

ad=bc => a/b=c/d ( a,b,c,d khác 0 )

=> b/a=d/c

=> 1-b/a=1-d/c

=> a-b/a=c-d/c 

=> a/a-b=c/c-d

=> ĐPCM

Câu 2 : 

Đk để phân số tồn tại là a,b,c khác 0

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

a/b=b/c=c/a=a+b+c/a+b+c=1

=> a=b;b=c;c=a => a=b=c

Khi đó : a^2+b^2+c^2/(a+b+c)^2 = a^2+a^2+a^2/(a+a+a)^2 = 3a^2/9a^2=1/3

=> ĐPCM

k mk nha

1 tháng 1 2018

câu 2 : là (a+b+c)^2 nha mn mình nhầm

6 tháng 3 2018

Xét ΔOAB và ΔOCD có :

OA = OC ( O là trung điểm của AC )

\(\widehat{AOB}\) = \(\widehat{COD}\) ( hai góc đối đỉnh )

OB = OD ( O là trung điểm của BD )

\(\Rightarrow\) ΔOAB = ΔOCD ( c.g.c )

\(\Rightarrow\) AB = CD ( hai cạnh tương ứng )

9 tháng 5 2020

ok,cảm ơn bạnhaha