Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A = 1 + 2 + 22 + ... + 299
= (1 + 2) + (22 + 23) + ... + (298 + 299)
= 1(1 + 2) + 22(1 + 2) + ... + 298(1 + 2)
= 1 . 3 + 22 . 3 + ... + 298 . 3
Vì 3 chia hết cho 3 nên 1 . 3 + 22 . 3 + ... + 298 . 3 chia hết cho 3
hay A chia hết cho 3 (đpcm)
b, A = 1 + 2 + 22 + ... + 299
= (1 + 2 + 22 + 23) + (24 + 25 + 26 + 27) + ... + (296 + 297 + 298 + 299)
= 1 . 15 + 24 . 15 + ... + 296 . 15
Vì 15 chia hết cho 15 nên 1 . 15 + 24 . 15 + ... + 296 . 15 chia hết cho 15
hay A chia hết cho 15 (đpcm)
Tiếp bài của @trankhanhvy2008
A = 1 + 2 + 22 + 23 + 24 + ... + 299
2A = 2( 1 + 2 + 22 + 23 + 24 + ... + 299 )
= 2 + 22 + 23 + 24 + ... + 2100
2A - A = ( 2 + 22 + 23 + 24 + ... + 2100 ) - ( 1 + 2 + 22 + 23 + 24 + ... + 299 )
=> A = 2 + 22 + 23 + 24 + ... + 2100 - 1 - 2 - 22 - 23 - 24 - ... - 299
= 2100 - 1
2100 - 1 < 2100
=> A < 2100
AI MÀ GIẢI!
CHỈ CÁI ĐỀ THÔI MÀ CŨNG ĐỦ RỐI RỒI!!!!!!!!!!!!!!!!!!
Vì a,b,c là các số nguyên dương nên a3-b3-c3 > 0
mà a3-b3-c3=3abc nên 3abc>0
-->a>b;a>c
--> 2a>b+c
-->4a>2(b+c)
-->4>a
Do 2(b+c) chia hết cho 2 mà 2(b+c)=a2 nên a2 chia hết cho 2
-->a chia hết cho 2
-->a=2 (Vì a<4)
-->b=c=1 (Vì b,c<2)
Vậy a=2,b=1,c=1
Vì a,b,c nguyên dương => 3abc>0
=> \(\hept{\begin{cases}a^3>b^3\Rightarrow a>b\\a^3>c^3\Rightarrow a>c\end{cases}}\)
\(\Rightarrow2a>b+c\)
\(\Leftrightarrow4a>2\left(b+c\right)\)hay \(4a>a^2\Rightarrow4>a\)
2(b+c) là số chắn
=> a^2 là số chẵn => a=2
Vì b;c<2=a
và b,c là số nguyên dương => b=c=1
Vậy a=2, b=1, c=1
Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.
BÀi 12:
S=1 + 2 + 22 + `23 +..........+ 22017
2S=2 + 22 + `23 + 24 +..........+22017 + 22018
Trừ đi hai vế ta được:
S=1 + 22018
a ) số đối : -9 = 9 ; 17 = 17
b ) 63 = 216 ; 70 = 1
Bài 2 :
a) 42
b) 30
c) 3800
Bài 3 :
a) x = -31
b) x = 2
c) x = { -2 ;-1 ; 0 ;1;2;3;4 }
1/a.9;-17.
b.216;1
2/a.42;b.30;c.3800
3/a.x=-31;b.x=2;c.x=-2;-1;0;1;2;3;4.
\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a.c}{c.b}=\frac{a}{b}\)
Mà \(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+d^2}\) (tính chất dãy tỉ số bằng nhau)
Suy ra \(\frac{a^2+c^2}{c^2+b^2}=\frac{a}{b}\)