Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\text{}\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{c}{b}=\frac{a}{b}\)
=> \(\frac{a}{b}=\frac{a^2+c^2}{b^2+c^2}\left(đpcm\right)\)
b) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮55\left(đpcm\right)\)
a) Từ \(\frac{a}{c}=\frac{c}{b}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{c}{b}\right)^2=\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)(1)
Ta có \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a^2+c^2}{c^2+b^2}=\frac{a}{b}=\left(\frac{a}{c}\right)^2\left(đpcm\right)\)
b) Ta có \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮55\left(đpcm\right)\)
\(\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab\)
ta có: \(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\left(đpcm\right)\)
\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}==\frac{ac}{cb}=\frac{a}{d}\)
Mà \(\frac{a^2}{b^2}=\frac{c^2}{c^2}=\frac{a^2+c^2}{b^2+c^2}\)
\(\Rightarrow\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)\(\Rightarrow\frac{b^2+c^2}{a^2+c^2}=\frac{b}{a}\)\(\Rightarrow\frac{b^2+c^2}{a^2+c^2}-1=\frac{b}{a}-1\)
\(\Rightarrow\frac{\left(b^2+c^2\right)-\left(a^2+c^2\right)}{a^2+c^2}=\frac{b-a}{a}\)
\(\Rightarrow\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\) (ĐPCM)
Ta có: \(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\Rightarrow ab-c^2=0\)
Ta lại có:\(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)
\(\Leftrightarrow a\left(b^2-a^2\right)=\left(b-a\right)\left(a^2+c^2\right)\)
\(\Leftrightarrow ab^2-a^3=a^2b+bc^2-a^3-ac^2\)
\(\Leftrightarrow ab^2-a^2b-bc^2+ac^2=0\)
\(\Leftrightarrow ab\left(b-a\right)-c^2\left(b-a\right)=0\)
\(\Leftrightarrow\left(b-a\right)\left(ab-c^2\right)=0\)[luôn đúng vì ab-c2=0(cmt)]
\(\frac{a}{c}=\frac{c}{b}\)
\(Đặt:a=ck,c=bk,a=bkk\)
\(\Rightarrow\frac{a^2+c^2}{b^2+c^2}=\frac{b^2k^2k^2+b^2k^2}{b^2+b^2k^2}=\frac{b^2k^2\left(k^2+1\right)}{b^2\left(1+k^2\right)}=\frac{b^2k^2}{b^2}=\frac{bk^2}{b}=\frac{a}{b}\left(đpcm\right)\)