Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ ac = b2 (1) => abc = b3
ab = c2 => abc = c3
=> b3 = c3 => b = c thay vào (1)
=> ab = b2 <=> (a - b).b = 0 <=> \(\orbr{\begin{cases}a=b\\b=0\left(loại\right)\end{cases}}\)
=> a = b = c
Khi đó: P = \(\frac{a^{555}}{a^{222}.a^{333}}+\frac{b^{555}}{b^{222}.b^{333}}+\frac{c^{555}}{c^{222}.c^{333}}=1+1+1=3\)
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c},c^2=ab\Rightarrow\frac{c}{a}=\frac{b}{c}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)( t/c dãy tỉ số bằng nhau)
=> a=b=c
\(A=\frac{a^{222}.c^{222}}{b^{555}}=\frac{c^{222}.c^{222}}{c^{555}}=\frac{1}{c^{111}}\)
Ta co a.c = b2 =b.b
Suy ra a/b =b/c (1)
Ta co a.b=c2=c.c
Suy ra a/c=c/b suy ra c/a = b/c (2)
Tu (1),(2) suy ra a/b=b/c=c/a
Ap dung tinh chat cua day ti so bang nhau ta co
a/b=b/c=c/a=a+b+c/b+c+a=1
Khi do a/b=1 suy ra a=b
b/c=1 suy ra b=c
a/c=1 suy ra a=c
Suy ra a=b=c (3)
Ta co M=b333/a111.c222
Thay (3) vao bieu thuc M ta co
M=a333/a111.a222
=a333/a111+222
=a333/a333 =1
Vay M=1
a/ \(3^{150}=\left(3^2\right)^{75}=9^{75}\)
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(9^{75}>8^{75}\Rightarrow3^{150}>2^{225}\)
b/
\(20162016^{10}=\left(2016.10001\right)^{10}=2016^{10}10001^{10}\)
\(2016^{20}=2016^{10}.2016^{10}\)
\(10001^{10}>2016^{10}\Rightarrow2016^{10}.10001^{10}>2016^{10}.2016^{10}\Rightarrow20162016^{10}>2016^{20}\)
c/ \(\frac{222^{333}}{333^{222}}=\frac{\left(222^3\right)^{111}}{\left(333^2\right)^{111}}=\frac{\left(2^3.111^3\right)^{111}}{\left(3^2.111^2\right)^{111}}=\left(\frac{8.111}{9}\right)^{111}\)
\(\frac{888}{9}>1\Rightarrow\left(\frac{888}{9}\right)^{111}>1\Rightarrow222^{333}>333^{222}\)
a) Ta có: 3^150 = 3^2.75 = (3^2)^75 = 9^75
2^225 = 2^3.75 = (2^3)^75 = 8^75
Vì 9 > 8 nên 9^75 > 8^75
Vậy 3^150 > 2^225
b) Ta có: 2016^20 = 2016^10+10 = 2016^10 . 2016^10
20162016^10 = (10001 . 2016)^10 = 10001^10 . 2016^10
Vì 2016^10 < 10001^10 nên 2016^10 . 2016^10 < 10001^10 . 2016^10
Vậy 2016^20 < 20162016^10
\(333^{333}=3^{333}.111^{333}\)
\(555^{222}=5^{222}.111^2\)
\(3^{333}=27^{111}>5^{222}=25^{111}\) (1)
\(111^{333}>111^{222}\)(2)
Từ (1) và (2) \(\rightarrow333^{333}>555^{222}\)
\(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì \(1000^{10}< 1024^{10}\Rightarrow10^{30}< 2^{100}\)
a, Ta có:
1030 = (103)10 = 100010
2100 = (210)10 = 102410
Vì 1000 < 1024
=> 100010 < 102410
hay 1030 < 2100
b, Ta có:
222555 = (2225)111 = (1115.25)111
= (1115 . 32)111
Lại có:
555222 = (5552)111 = (1112 . 52)111
= (1112 . 25)111
Ta có:
1112 < 1115
=> 1112.25 < 1115 . 32
=>(1112 . 25)111 < (1112 . 25)111
hay 555222 < 222555
\(\left\{{}\begin{matrix}ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\\ab=c^2\Rightarrow\frac{b}{c}=\frac{c}{a}\end{matrix}\right.\) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
\(\Rightarrow P=1+1+1=3\)