K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

Ta có: \(2\left(a^4+b^4\right)-\left(ab^3+a^3b+2a^2b^2\right)\)

\(=\left(a^2-b^2\right)^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Ta có đpcm

18 tháng 8 2019

a) \(5x^2-4x=9\)

\(5x^2-4x-9=0\)

\(5x^2+5x-9x-9=0\)

\(5x\left(x+1\right)-9\left(x+1\right)=0\)

\(\left(x+1\right)\left(5x-9\right)=0\)

\(\hept{\begin{cases}x+1=0\\5x-9=0\end{cases}}\)

\(\hept{\begin{cases}x=-1\\x=\frac{9}{5}\end{cases}}\)

18 tháng 8 2019

b) \(4x^2-2x+\frac{1}{4}\) với x = 0,25

Thay x = 0,25 vào biểu thức, ta có:

\(4.\left(0,25\right)^2-2.\left(0,25\right)+\frac{1}{4}=0\)

18 tháng 8 2019

Bài 2:

a)20182+4.2018-202+4

=2018.2018+4.2018-404

=2018.(2018+4)-404

=2018.2022-404

=4 079 992

18 tháng 8 2019

Bài 1:

a)5x2-4x=9

5.x.x-4.x=9

3x.(5-4)  =9

 3x.1       =9

 3x          =9:1

 3x          =9

  x           =9:3

  x            =3

13 tháng 6 2019

a)  a2+b2-2ab=(a-b)2>=0

b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=>  \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)

c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)

28 tháng 8 2015

a2+b2+c2=ab+ac+bc

<=>2a2+2b2+2c2=2ab+2ac+2bc

<=>a2-2ab+b2+a2-2ac+c2+b2-2bc=0

<=>(a-b)2+(a-c)2+(b-c)2=0

<=>a-b=0 và a-c=0 và b-c=0

<=>a=b=c

8 tháng 8 2016

1) A= 2a2b2+2a2c2+2b2c2-a^4-b^4-c^4

       = 2a2b2+2a2c2+2b2c2-(a^4+b^4+c^4)

       =  2a2b2+2a2c2+2b2c-[(a2+b2+c2)2+2a2b2+2a2c2+2b2c)

       = 2a2b2+2a2c2+2b2c2 -(a2+b2+c2)2-2a2b2-2a2c2-2b2c2

         = (a2+b2+c2)>0

8 tháng 8 2016

\(A=5n^3+15n^2+10n\)

\(=5n\left(n^2+2\times n\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right)\)

\(=5n\left[\left(n+\frac{3}{2}\right)^2-\frac{1}{4}\right]\)

\(=5n\left[\left(n+\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2\right]\)

\(=5n\left(n+\frac{3}{2}+\frac{1}{2}\right)\left(n+\frac{3}{2}-\frac{1}{2}\right)\)

\(=5n\left(n+2\right)\left(n+1\right)\)

Tích của 3 số nguyên liên tiếp chia hết cho 6

=> A vừa chia hết cho 6 vừa chia hết cho 5

=> A chia hết cho 30 (đpcm)

5 tháng 12 2016

Mình sẽ chứng minh bằng biến đổi tương đương nhé :)

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\ge0\)

\(\Leftrightarrow\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)(luôn đúng)

Vì BĐT cuối luôn đúng nên BĐT ban đầu được chứng minh.