Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.P=\(\frac{3-a}{a+10}\)
a, để P>0
TH1 3-a>0 và a+10 >0
=> a<3 và a> -10
=> -10<a<3
TH2 3-a<0 và a+10<0
=> a>3 và a<-10(vô lý)
Vậy để P>0 thì -10<a<3
b.để P<0
TH1 3-a<0 và a+10>0
a>3 và a>-10
Vậy a>3
TH2 3-a>0 và a+10<0
=> a<3 và a<-10
Vậy a<-10
vậy để P<0 thì a >3 hoặc a<-10
bài 3.
a.\(\frac{7}{3}\)<x<\(\frac{17}{2}\)=>\(\frac{14}{6}\)<x<\(\frac{51}{6}\)
Vậy x=\(\left\{\frac{15}{6};\frac{16}{6};\frac{17}{6};..........;\frac{50}{6}\right\}\)
b.\(\frac{-3}{2}\)<y<2=>\(\frac{-3}{2}\)<y<\(\frac{4}{2}\)
Vậy y=\(\left\{\frac{-2}{2};\frac{-1}{2};\frac{0}{2};\frac{1}{2};\frac{2}{2};\frac{3}{2}\right\}\)
c.\(\frac{-17}{3}\)<z<\(\frac{-3}{2}\)=>\(\frac{-34}{6}\)<z<\(\frac{-9}{6}\)
Vậy z=\(\left\{\frac{-33}{6};\frac{-32}{6};\frac{-31}{6};.........\frac{-10}{6}\right\}\)
Vì x<y nên :
# \(\frac{a}{m}< \frac{b}{m}\) #\(\frac{a}{m}< \frac{b}{m}\)
\(\frac{a}{m}+\frac{a}{m}< \frac{b}{m}+\frac{a}{m}\) \(\frac{a}{m}+\frac{b}{m}< \frac{b}{m}+\frac{b}{m}\)
\(\frac{2a}{m}< \frac{a+b}{m}\) \(\frac{a+b}{m}< \frac{2b}{m}\)
\(\frac{2a}{2m}< \frac{a+b}{2m}\) \(\frac{a+b}{2m}< \frac{2b}{2m}\)
\(\frac{a}{m}< \frac{a+b}{2m}\) \(\frac{a+b}{2m}< \frac{b}{m}\)
=> x < z ( 1 ) => z < y ( 2)
TỪ (1) VÀ (2) TA SUY RA X < Z < Y
( Nếu có chỗ nào bạn ko hỉu thì ib cho mik nha mk sẽ chỉ bn ha ) ( ý mà nhớ là ..... ( ai cx muốn hì....hì...) )
Ta có x = \(\frac{2a}{2m}\)< \(\frac{a+b}{2m}\)= z
y = \(\frac{2b}{2m}\)> \(\frac{a+b}{2m}\)= z
Do x < y => a/m < b/m
=> a/m + a/m < a/m + b/m < b/m + b/m
=> 2x < a+b/m < 2y
=> x < a+b/m : 2 < 2y
=> x < a+b/m . 1/2 < y
=> x < a+b/2m < y
Chứng tỏ ...
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
x=a/m; y=b/m; x<y suy ra a/m<b/m suy ra a<b
suy ra a+a<a+b suy ra 2a<a+b suy ra 2a/m<a+b/m suy ra 2a/2m<a+b/2m
Hay x<z
Tương tự ta có z<y
Nên x<z<y
Ta có: \(\frac{a}{m}< \frac{b}{m}\)
Mà m>0 => a<b
Do đó: \(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
hay \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
Theo đề bài ta có x = \(\frac{a}{m}\) , y = \(\frac{b}{m}\)( a, b, m \(\in\) Z, m > 0 )
Vì x < y nên ta suy ra a < b
Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\), , z = \(\frac{a+b}{2m}\)
Vì a < b => a + a < a +b => 2a < a + b
Do 2a< a +b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a+b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z< y