K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2021

Ta có:

\(P=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)

\(P=\left(\frac{\sqrt{ab}}{a+b}+\frac{a+b}{4\sqrt{ab}}\right)+\frac{3\left(a+b\right)}{4\sqrt{ab}}\)

\(\ge2\sqrt{\frac{\sqrt{ab}}{a+b}\cdot\frac{a+b}{4\sqrt{ab}}}+\frac{3\cdot2\sqrt{ab}}{4\sqrt{ab}}\) (BĐT Cauchy)

\(=2\cdot\frac{1}{2}+\frac{3}{2}=\frac{5}{2}\)

Dấu "=" xảy ra khi: a = b

Vậy \(Min_P=\frac{5}{2}\Leftrightarrow a=b\)

DD
30 tháng 3 2021

\(P=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}=\frac{3}{4}\frac{a+b}{\sqrt{ab}}+\frac{1}{4}\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)

Ta có: 

\(a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{\sqrt{ab}}\ge2\).

\(\frac{1}{4}\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\ge2\sqrt{\frac{1}{4}\frac{\left(a+b\right)\sqrt{ab}}{\sqrt{ab}\left(a+b\right)}}=1\).

Suy ra \(P\ge\frac{3}{4}.2+1=\frac{5}{2}\).

Dấu \(=\)xảy ra khi \(a=b\)

23 tháng 10 2018

Với a, b dương:

\(8^2=\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)^2\ge\frac{4}{\sqrt{ab}}\)

\(\Rightarrow\frac{1}{\sqrt{ab}}\le\frac{64}{4}=16\)

max A=16 khi a=b=1/4

25 tháng 7 2020

Dễ thấy theo AM - GM ta có:

\(P\ge3\sqrt[3]{\sqrt{\frac{a+b}{c+ab}\cdot\sqrt{\frac{b+c}{a+bc}}\cdot\sqrt{\frac{c+a}{b+ca}}}}\)

Ta cần chứng minh \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(c+ab\right)\left(a+bc\right)\left(b+ca\right)\)

Mặt khác theo AM - GM:

\(\left(c+ab\right)\left(a+bc\right)\le\frac{\left(c+ab+a+bc\right)^2}{4}=\frac{\left(b+1\right)^2\left(a+c\right)^2}{4}\)

Tương tự thì:

\(\left(c+ab\right)\left(a+bc\right)\left(b+ca\right)\le\frac{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\)

Ta cần chứng minh:\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\le8\)

Áp dụng tiếp AM - GM:

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\le\frac{\left(a+1+b+1+c+1\right)^3}{27}=8\)

Vậy ta có đpcm

Chuyên Phan năm nay :))

7 tháng 7 2019

Bất đẳng thức cần chứng minh tương đương với:

\(\frac{a+b}{\sqrt{ab}}\)+\(\frac{4\sqrt{ab}}{a+b}\)-\(\frac{3ab}{a+b}\)\(\ge\)\(\frac{5}{2}\)(*)

Nhưng mà theo bất đẳng thức AM-GM thì (*) tương đương với 

2\(\sqrt{\frac{a+b}{\sqrt{ab}}.\frac{4\sqrt{ab}}{a+b}}\)-\(\frac{3\sqrt{ab}}{2\sqrt{ab}}\)\(\ge\)\(\frac{5}{2}\)

và tương đương với 4-\(\frac{3}{2}\)\(\ge\)\(\frac{5}{2}\)hiển nhiên đúng nên (*) đúng hay ta có đpcm

Vậy \(\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)\(\ge\)\(\frac{5}{2}\)

dấu đẳng thức xảy ra khi a=b

16 tháng 6 2017

\(\sqrt{a^2+ab+b^2}=\sqrt{\left(a+b\right)^2-ab}\ge\sqrt{\left(a+b\right)^2-\dfrac{\left(a+b\right)^2}{4}}=\sqrt{\dfrac{3}{4}\left(a+b\right)^2}=\dfrac{\sqrt{3}\left(a+b\right)}{2}.\)

Tương tự

=> P \(\ge\dfrac{\sqrt{3}}{2}.2\left(a+b+c\right)=\sqrt{3}.\)

Vậy \(Pmin=\sqrt{3}\) khi a =b=c = 1/3

6 tháng 7 2016

Trả lời hộ mình đi