\(\frac{3}{a^2+b^2}+\frac{2}{ab}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2020

\(A=\frac{3}{a^2+b^2}+\frac{2}{ab}\)

\(=\frac{3}{a^2+b^2}+\frac{4}{2ab}\ge\frac{\left(\sqrt{3}+2\right)^2}{\left(a+b\right)^2}\)(cauchy-schwarz dạng engel)

\(=7+4\sqrt{3}\)

18 tháng 5 2020

\(P=\frac{1}{ab+2}+\frac{1}{bc+2}+\frac{1}{ca+2}\ge\frac{9}{ab+bc+ca+6}\ge\frac{9}{a^2+b^2+c^2+6}=1\)

Dấu "=" xảy ra <=> a = b = c = 1 

Vậy GTNN của P = 1 đạt tại x = y = z = 1

30 tháng 7 2020

1. Áp dụng BĐT Cauchy dạng Engle, ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

30 tháng 7 2020

\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)

\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)

Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)

\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)

Áp dụng BĐT Cauchy cho a ; b dương

Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)

25 tháng 4 2019

Đầu tiên,ta chứng minh BĐT phụ \(\frac{\left(x+y\right)^2}{2}\ge2xy\Leftrightarrow\frac{\left(x+y\right)^2-4xy}{2}\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng).Dấu "=" xảy ra khi x = y.

Và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\).Áp dụng BĐT AM-GM(Cô si),ta có; \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{\left(x+y\right)}{2}}=\frac{4}{x+y}\)

Dấu "=" xảy ra khi x = y

\(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)\(\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2ab}\)

\(\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}\ge4+\frac{1}{\frac{1}{2}}=6\)

Dấu "=" xảy ra khi a = b và a + b = 1 tức là a=b=1/2

Vậy Min P = 6 khi a = b = 1/2 

\(\left(a+b+c\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge0\)

\(\Leftrightarrow1+2\left(ab+bc+ac\right)\ge0\)

\(\Leftrightarrow ab+bc+ac\ge\frac{1}{2}\)

\(\left(ab+bc+ac\right)^2\ge\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2\left(abbc+bcac+abac\right)\ge\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)\ge\frac{1}{4}\)

Đến đây bạn tự làm tiếp nha