Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c > 0 thỏa mãn: a2+b2+c2=1
Tìm GTNN của C= \(\frac{bc}{a}\)+\(\frac{ac}{b}\)+\(\frac{ab}{c}\)
\(Q=\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{4}{a^2+b^2}=\frac{4}{10}=\frac{2}{5}\)
Dấu "=" xảy ra <=> a = b và a^2 +b^2 = 10; a, b> 0 <=> a = b = \(\sqrt{5}\)
Đầu tiên ta chứng minh bổ đề.
Ta có
\(6=3.\frac{a^2}{3}+2.\frac{b^2}{2}+c^2\)
\(\ge6.\sqrt[6]{\left(\frac{a^2}{3}\right)^3.\left(\frac{b^2}{2}\right)^2.c^2}=6.\sqrt[6]{\frac{a^6b^4c^2}{3^3.2^2}}\)
\(\Rightarrow a^6b^4c^2\le3^3.2^2\)
Ta lại có:
\(P=3.\frac{a}{3bc}+4.\frac{b}{2ca}+5.\frac{c}{ab}\)
\(\ge12.\sqrt[12]{\left(\frac{a}{3bc}\right)^3.\left(\frac{b}{2ca}\right)^4.\left(\frac{c}{ab}\right)^5}\)
\(=\frac{12}{\sqrt[12]{3^3.2^4}.\sqrt[12]{a^6b^4c^2}}\)
\(\ge\frac{12}{\sqrt[12]{3^3.2^4}.\sqrt[12]{3^3.2^2}}=2\sqrt{6}\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=\sqrt{3}\\b=\sqrt{2}\\c=1\end{cases}}\)
đặt \(A=\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\)
\(\Rightarrow A-3=P=\frac{ab}{1-ab}+\frac{bc}{1-bc}+\frac{ca}{1-ca}\)
áp dụng BĐT cô-si ta có:
\(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+a^2\ge2ca\)
\(\Rightarrow\frac{a^2+b^2}{2}\ge ab;\frac{b^2+c^2}{2}\ge bc;\frac{c^2+a^2}{2}\ge ca\)
\(\Rightarrow1-\frac{a^2+b^2}{2}\le1-ab;1-\frac{b^2+c^2}{2}\le1-bc;1-\frac{c^2+a^2}{2}\le1-ca\)
\(\Rightarrow P\le\frac{2ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}+\frac{2bc}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}+\frac{2ca}{\left(a^2+b^2\right)+\left(b^2+c^2\right)}\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{\left(a+b\right)^2}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}+\frac{\left(b+c\right)^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}+\frac{\left(c+a\right)^2}{\left(a^2+b^2\right)+\left(b^2+c^2\right)}\right)\)
Áp dụng BĐT Schwarts ta có:
\(\frac{\left(a+b\right)^2}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\le\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\)
\(\frac{\left(b+c\right)^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\)
\(\frac{\left(c+a\right)^2}{\left(a^2+b^2\right)+\left(b^2+c^2\right)}\le\frac{a^2}{a^2+b^2}+\frac{c^2}{b^2+c^2}\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}\right)=\frac{1}{2}.3=\frac{3}{2}\)
\(\Rightarrow P+3\le\frac{3}{2}+3\)
\(\Rightarrow A\le\frac{9}{2}\)
dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Bất đẳng thức cần chứng minh tương đương: \(\frac{1}{ab-1}+\frac{1}{bc-1}+\frac{1}{ca-1}\ge\frac{-9}{2}\)
Theo bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\frac{1}{ab-1}+\frac{1}{bc-1}+\frac{1}{ca-1}\ge\frac{9}{ab+bc+ca-3}\)
\(\ge\frac{9}{a^2+b^2+c^2-3}=\frac{9}{1-3}=\frac{-9}{2}\left(Q.E.D\right)\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Mình xem phép làm câu 1 ạ.
Đề là?
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)
Chứng minh tương đương
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc - 9ab + 6b2 \(\le\)0 ( quy đồng ) (2)
Từ (1) <=> 2ac = ab + bc Thay vào (2) <=> 6ab + 6bc - 9bc - 9ab + 6b2 \(\le\)0
<=> a + c \(\ge\)2b
Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)
=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng
Dấu "=" xảy ra <=> a = c = b
a) Ta có ; \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a^2+2ab+b^2\right)\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=2\)
Vậy A đạt giá trị nhỏ nhất bằng 2 tại a = b = 1
b) Ta có : \(B=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2=\left(a^2+\frac{1}{a^2}\right)+\left(b^2+\frac{1}{b^2}\right)+4\)
Lại có : \(a^2+\frac{1}{a^2}\ge2\) ; \(b^2+\frac{1}{b^2}\ge2\)
\(\Rightarrow B\ge2+2+4=8\). Dấu "=" xảy ra khi \(\hept{\begin{cases}a^2=\frac{1}{a^2}\\b^2=\frac{1}{b^2}\\a+b=2\end{cases}}\) \(\Leftrightarrow a=b=1\)(vì a,b>0)
Vậy B đạt giá trị nhỏ nhất bằng 8 tại a = b = 1