\(\frac{1}{1+a^2+b^2}+\frac{1}{2ab}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2021

Ta có: 

\(B=\frac{1}{1+a^2+b^2}+\frac{1}{2ab}\)

\(B=\left(\frac{1}{1+a^2+b^2}+\frac{1}{6ab}\right)+\frac{1}{3ab}\)

Áp dụng BĐT Cauchy - Schwarz và Cauchy ta có:

\(B\ge\frac{\left(1+1\right)^2}{1+a^2+b^2+6ab}+\frac{1}{3\cdot\frac{\left(a+b\right)^2}{4}}\)

\(\ge\frac{4}{1+\left(a+b\right)^2+4ab}+\frac{1}{3\cdot\frac{1}{4}}\)

\(\ge\frac{4}{1+1+\left(a+b\right)^2}+\frac{4}{3}\ge\frac{4}{2+1}+\frac{4}{3}=\frac{8}{3}\)

Dấu "=" xảy ra khi: a = b = 1/2

18 tháng 8 2019

Cauchy Schwars 

\(M\ge\frac{\left(1+1+1\right)^2}{\left(a+b+c\right)^2}=\frac{9}{\left(a+b+c\right)^2}\ge9\Rightarrow M_{min}=9\Leftrightarrow a=b=c=\frac{1}{3}\)

18 tháng 8 2019

\(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)

Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)

Vay \(M_{min}=9\)

28 tháng 3 2017

Hình như đề là a2+b2 thôi chứ có cả 1+a2+b2 luôn à? Mình làm theo cái đề có a2+b2 chứ không có +1 nhé!

Áp dụng bất đẳng thức Cauchy Schawrz dạng Engel ta được:

\(B=\frac{1^2}{a^2+b^2}+\frac{1^2}{2ab}\ge\frac{\left(1+1\right)^2}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\)

mà a;b>0 => a+b>0 và \(a+b\le1\Rightarrow\left(a+b\right)^2\le1\) => \(\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\)

=>\(B=\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge4\Rightarrow B_{min}=4\)  <=> a=b=0,5

29 tháng 3 2017

@Trà My: có 1+a2+b2 thì vẫn có Min vấn đề là chưa đủ trình độ mà còn đòi tự sửa đề

3 tháng 1 2018

Áp dụng Cauchy, ta có:

    \(a^4+b^2\ge2\sqrt{a^4b^2}=2a^2b\)

\(\Rightarrow\frac{1}{a^4+b^2+2ab^2}\le\frac{1}{2a^2b+2ab^2}\)

Tượng tự:

 \(\frac{1}{b^4+a^2+2a^2b}\le\frac{1}{2a^2b+2ab^2}\)

\(\Rightarrow A\le\frac{2}{2ab\left(a+b\right)}\)

Lại có: \(\frac{1}{a}+\frac{1}{b}=2\)\(\Leftrightarrow\frac{a+b}{ab}=2\Rightarrow a+b=2ab\)

\(\Rightarrow A\le\frac{2}{\left(a+b\right)^2}\)

Áp dụng Schwarzt: \(2=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge a+b\ge2\Rightarrow\left(a+b\right)^2\ge4\)

\(\Rightarrow A\le\frac{2}{4}=\frac{1}{2}\)

Dấu = xảy ra khi a=b=1

3 tháng 1 2018

Áp dụng bđt cosi ta có : 

A < = 1/2a^2b+2/ab^2  +  1/2ab^2+2a^2b

= 1/2ab . (1/a+b + 1/a+b) = 1/2ab . 2/a+b = 1/(a+b).(ab)

< = 1/\(\sqrt{ab}.2.ab\) = 1/2\(\sqrt{ab}^3\)

Có : 2 = 1/a + 1/b >= 2\(\sqrt{\frac{1}{ab}}\)

=> \(\sqrt{\frac{1}{ab}}\)< = 1

=> 1/ab < = 1

=> ab > =1

=> A < = 1/2.1 = 1/2

Dấu "=" xảy ra <=> a=b=1

Vậy GTLN của A = 1/2 <=> a=b=1

Tk mk nha

27 tháng 5 2017

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

27 tháng 5 2017

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

9 tháng 4 2018

a, Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x,y>0\)

Ta có: \(A=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+\frac{4}{a+b}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

b, Áp dụng \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x,y,z>0\)

Ta có: \(B=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2+\left(1+\frac{1}{c}\right)^2\ge\frac{\left(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\ge\frac{\left(3+\frac{9}{a+b+c}\right)^2}{3}\ge\frac{\left(3+6\right)^2}{3}=27\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

* Các BĐT phụ bạn tự CM nha! Chúc bạn học tốt

10 tháng 4 2018

Camon bạn!!! Nhưng bạn đọc sai đề r !! ^.^

28 tháng 3 2017

Câu hỏi của tran huu dinh - Toán lớp 8 - Học toán với OnlineMath

28 tháng 3 2017

một bài y chang đã làm rồi :)

12 tháng 7 2016

Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) với \(x=a^2+2bc;y=b^2+2ac;z=c^2+2ab\)

Ta có : \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=\frac{9}{\left(a+b+c\right)^2}\)

\(\Rightarrow\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)( Vì a + b + c = 1)

25 tháng 1 2019

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\text{Mà }\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\Rightarrow2ab+2bc+2ac=0\)

\(\Rightarrow\hept{\begin{cases}2ab=-2bc-2ac\\2bc=-2ac-2ab\\2ac=-2ab-2bc\end{cases}}\)

\(A=\frac{a^2}{a^2-2ab-2ac}+\frac{b^2}{b^2-2ab-2bc}+\frac{c^2}{c^2-2bc-2ac}\)

\(A=\frac{a^2}{a.\left(a-2b-2c\right)}+\frac{b^2}{b.\left(b-2a-2c\right)}+\frac{c^2}{c.\left(c-2b-2c\right)}\)

\(A=\frac{a}{a-2b-2c}+\frac{b}{b-2a-2c}+\frac{c}{c-2b-2c}\)

25 tháng 1 2019

bạn ơi không rút gọn đc nữa ak

16 tháng 4 2018

Cách 1:(nếu đã học BĐT Bunhia)=>Áp dụng BĐT Bunbiacopxki ta có:

\(\frac{1^2}{a^2+2bc}+\frac{1^2}{b^2+2ac}+\frac{1^2}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{3^2}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

Cách 2:chưa học BĐT ...

Với a,b,c>0 thì \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)(tự chứng minh)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Áp dụng ta có:\(BĐT\ge\frac{9}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\ge9\)