K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đề sai cmnr

13 tháng 12 2018

Sai rồi chắc chắn luôn vì:

nếu a,b>0 thì a+b\(\ge\)2,

mà đề lại cho a+b=1.

Nên đề đúng có thể là: cho a,b\(\ne\)0 và a+b=1 tìm GTTĐ của ....(phần sau chắc đúng rồi)

29 tháng 6 2020

\(\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=4\Leftrightarrow\sqrt{ab}+\sqrt{a}+\sqrt{b}=3\)

\(\text{Ta có:}M\ge a+b\Rightarrow2M+2\ge a+b+a+1+b+1\ge2\left(\sqrt{ab}+\sqrt{a}+\sqrt{b}\right)\left(\text{theo cô si}\right)=6\)

\(\Rightarrow M\ge2\left(\text{dấu "=" xảy ra khi:}a=b=1\right)\)

3 tháng 10 2019

Áp dụng BĐT AM - GM

\(A=\left(a+1\right)\left(1+\frac{1}{b}\right)+\left(b+1\right)\left(1+\frac{1}{a}\right)\)

\(=\frac{a}{b}+\frac{b}{a}+a+\frac{1}{a}+b+\frac{1}{b}+2\)

\(=\frac{a}{b}+\frac{b}{a}+\left(a+\frac{1}{2a}\right)+\left(b+\frac{1}{2b}\right)+\frac{1}{2a}+\frac{1}{2b}+2\)

\(\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{a.\frac{1}{2a}}+2\sqrt{b.\frac{1}{2b}}+2\sqrt{\frac{1}{2a}.\frac{1}{2b}}+2\)

\(=4+2\sqrt{2}+\frac{1}{\sqrt{ab}}\ge4+2\sqrt{2}+\frac{1}{\frac{\sqrt{2\left(a^2+b^2\right)}}{2}}\)

\(=4+3\sqrt{2}\)

Dấu " = " xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)

3 tháng 10 2019

Ta co:\(1=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\Rightarrow a+b\le\sqrt{2}\)

Ta lai co:

\(A=\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b+2\)

\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{1}{a}+2a\right)+\left(\frac{1}{b}+2b\right)-\left(a+b\right)+2\)

\(\ge2+2\sqrt{2}+2\sqrt{2}-\sqrt{2}+2=4+3\sqrt{2}\)

Dau '=' xay ra khi \(a=b=\frac{1}{\sqrt{2}}\)

Vay \(A_{min}=4+3\sqrt{2}\)khi \(a=b=\frac{1}{\sqrt{2}}\)

NV
11 tháng 2 2020

Hình như bạn viết nhầm đề, làm gì có số 9 ở đầu?

\(\frac{1}{1+a}+\frac{1}{1+b}\ge2\sqrt{\frac{1}{\left(1+a\right)\left(1+b\right)}}\)

\(\frac{a}{1+a}+\frac{b}{1+b}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)

Cộng vế với vế: \(1\ge\frac{1+\sqrt{ab}}{\sqrt{\left(1+a\right)\left(1+b\right)}}\Leftrightarrow\left(1+a\right)\left(1+b\right)\ge\left(1+\sqrt{ab}\right)^2\)

Áp dụng xuống dưới ta có:

\(M\ge\left(1+\sqrt{b}\right)^2\left(1+\frac{4}{\sqrt{b}}\right)^2=\left(5+\frac{4}{\sqrt{b}}+\sqrt{b}\right)^2\ge\left(5+2\sqrt{\frac{4\sqrt{b}}{\sqrt{b}}}\right)^2=81\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=4\\a=2\end{matrix}\right.\)

11 tháng 2 2020

mình vt nhầm số 9

22 tháng 9 2020

mình làm cách đơn giản nhất .

Sử dụng liên tiếp bđt Svacxo ta có :

\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}=\frac{\left(a+b+\frac{4}{a+b}\right)^2}{2}\)

\(=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)Hay \(P\ge\frac{25}{2}\)Dấu = xảy ra khi và chỉ khi \(a=b=\frac{1}{2}\)

23 tháng 9 2020

cách khác !

 \(P=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}+2\frac{a}{b}+2\frac{b}{a}\)

Theo bất đẳng thức AM-GM ta có : \(a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{2a}{b}+\frac{2b}{a}\ge a^2+b^2+2\sqrt{\frac{1}{a^2b^2}}+2\sqrt{\frac{2a2b}{ab}}\)

\(=a^2+b^2+\frac{2}{ab}+2\sqrt{4}=a^2+b^2+\frac{2}{ab}+4\)

Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức : \(a^2+b^2+\frac{2}{ab}+4\ge\frac{\left(a+b\right)^2}{2}+\frac{2}{ab}+4=\frac{1}{2}+4+\frac{2}{ab}\)

Ta sẽ chứng minh bất đẳng thức phụ sau : \(ab\le\frac{\left(a+b\right)^2}{4}\)Biến đổi tương đương ta có : 

\(\left(a+b\right)^2\ge4ab< =>a^2+2ba+b^2\ge4ab< =>a^2-2ab+b^2\ge0< =>\left(a-b\right)^2\ge0\)*đúng*

Sử dụng bất đẳng thức phụ trên ta được : \(\frac{9}{2}+\frac{2}{ab}\ge\frac{9}{2}+\frac{2}{\frac{\left(a+b\right)^2}{4}}=\frac{9}{2}+\frac{2}{\frac{1}{4}}=\frac{9}{2}+8=\frac{25}{2}\)

Hay : \(P\ge a^2+b^2+\frac{2}{ab}+4\ge\frac{1}{2}+4+\frac{2}{ab}\ge\frac{9}{2}+8=\frac{25}{2}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=\frac{1}{2}\)

22 tháng 2 2020

\(P=\left[\left(2+\frac{1}{a}+\frac{1}{b}\right)+1\right]\left[\left(2+\frac{1}{b}+\frac{1}{c}\right)+1\right]\left[\left(2+\frac{1}{c}+\frac{1}{a}\right)+1\right]\)

\(\ge\left(6\sqrt[3]{\frac{1}{4ab}}+1\right)\left(6\sqrt[3]{\frac{1}{4bc}}+1\right)\left(6\sqrt[3]{\frac{1}{4ca}}+1\right)\)

\(\ge\left[7\sqrt[7]{\left(\sqrt[3]{\frac{1}{4ab}}\right)^6}\right]\left[7\sqrt[7]{\left(\sqrt[3]{\frac{1}{4bc}}\right)^6}\right]\left[7\sqrt[7]{\left(\sqrt[3]{\frac{1}{4ca}}\right)^6}\right]\)

\(=\left[7\sqrt[7]{\left(\frac{1}{4ab}\right)^2}\right]\left[7\sqrt[7]{\left(\frac{1}{4bc}\right)^2}\right]\left[7\sqrt[7]{\left(\frac{1}{4ca}\right)^2}\right]\)

\(=343\sqrt[7]{\left(\frac{1}{64\left(abc\right)^2}\right)^2}\ge343\sqrt[7]{\left(\frac{1}{64\left[\frac{\left(a+b+c\right)^3}{27}\right]^2}\right)^2}=343\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

P/s: Em chưa check lại đâu nha::D

22 tháng 2 2020

Khúc cuối bài ban nãy là \(\ge343\) nha! Em đánh nhầm

Cách khác (em thử dùng Holder, mới học nên em không chắc lắm):

\(P\ge\left(3+\sqrt[3]{\frac{1}{abc}}+\sqrt[3]{\frac{1}{abc}}\right)^3=\left(3+2\sqrt[3]{\frac{1}{abc}}\right)^3\ge\left(3+2\sqrt[3]{\frac{1}{\left[\frac{\left(a+b+c\right)^3}{27}\right]}}\right)^3\ge343\)

7 tháng 12 2017

bài 1

ÁP dụng AM-GM ta có:

\(\frac{a^3}{b\left(2c+a\right)}+\frac{2c+a}{9}+\frac{b}{3}\ge3\sqrt[3]{\frac{a^3.\left(2c+a\right).b}{b\left(2c+a\right).27}}=a.\)

tương tự ta có:\(\frac{b^3}{c\left(2a+b\right)}+\frac{2a+b}{9}+\frac{c}{3}\ge b,\frac{c^3}{a\left(2b+c\right)}+\frac{2b+c}{9}+\frac{a}{3}\ge c\)

công tất cả lại ta có:

\(P+\frac{2a+b}{9}+\frac{2b+c}{9}+\frac{2c+a}{9}+\frac{a+b+c}{3}\ge a+b+c\)

\(P+\frac{2\left(a+b+c\right)}{3}\ge a+b+c\)

Thay \(a+b+c=3\)vào ta được":

\(P+2\ge3\Leftrightarrow P\ge1\)

Vậy Min là \(1\)

dấu \(=\)xảy ra khi \(a=b=c=1\)

3 tháng 10 2020

Ta có: \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow4.2011a\left(2011a-2\right)\le\left(2011a+2011a-2\right)^2=4\left(2011a-1\right)^2\)

\(\Leftrightarrow2011a\left(2011a-2\right)\le\left(2011a-1\right)^2\)

\(\Leftrightarrow\frac{2011a\left(2011a-2\right)}{\left(2011a-1\right)^2}\le1\)

\(\Leftrightarrow\frac{1}{a}-\frac{2011a\left(2011a-2\right)}{\left(2011a-1\right)^2}\ge\frac{1}{a}-1\)\(\Leftrightarrow\frac{1}{a\left(2011a-1\right)^2}\ge\frac{1}{a}-1\)

Tương tự: \(\frac{1}{b\left(2011b-1\right)^2}\ge\frac{1}{b}-1;\frac{1}{c\left(2011c-1\right)^2}\ge\frac{1}{c}-1\)

\(\Leftrightarrow\frac{1}{a\left(2011a-1\right)^2}+\frac{1}{b\left(2011b-1\right)^2}+\frac{1}{c\left(2011c-1\right)^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-3=2011-3=2008\)

Sai thì thôi nhá bẹn!

6 tháng 11 2017

a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3

MInA=3<=>x=y=z=1

6 tháng 11 2017

b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)