\(\frac{a}{\sqrt{b}-1}\)+\(\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

Từ giả thiết, ta có 

\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\Rightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=4\)

=>\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\)

Tháy vào, ta có M=\(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+a}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+b}{\sqrt{b}+\sqrt{c}}+\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+c}{\sqrt{a}+\sqrt{c}}\)

=\(\frac{\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\frac{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}{\sqrt{b}+\sqrt{c}}+\frac{\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{c}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{c}}\)

=\(\sqrt{a}+\sqrt{c}+\sqrt{b}+\sqrt{a}+\sqrt{c}+\sqrt{b}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=4\)

Vậy M=4

^_^

AH
Akai Haruma
Giáo viên
16 tháng 1 2020

Lời giải:

Áp dụng BĐT AM-GM:

\(\sqrt[3]{a+3b}=\sqrt[3]{1.1.(a+3b)}\leq \frac{1+1+a+3b}{3}\)

\(\Rightarrow \frac{1}{\sqrt[3]{a+3b}}\geq \frac{3}{a+3b+2}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:
$\Rightarrow P\geq 3\left(\frac{1}{a+3b+2}+\frac{1}{b+3c+2}+\frac{1}{c+3a+2}\right)$

Áp dụng BĐT Cauchy- Schwarz:

\(\frac{1}{a+3b+2}+\frac{1}{b+3c+2}+\frac{1}{c+3a+2}\geq \frac{9}{4(a+b+c)+6}=\frac{9}{4.\frac{3}{4}+6}=1\)

Do đó: $P\geq 3.1=3$

Vậy $P_{\min}=3$ khi $a=b=c=\frac{1}{4}$

21 tháng 7 2018

từ giả thiết, ta có \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\Rightarrow xy+yz+xz=1\)

Ta có \(\frac{1}{\sqrt{a^2+1}}=\frac{1}{\sqrt{\frac{1}{x^2}+1}}=\frac{1}{\sqrt{\frac{1+x^2}{x^2}}}=\frac{x}{\sqrt{x^2+xy+yz+zx}}\) =\(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

Áp dụng BĐT cô-si, ta có \(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Tương tự, rồi cộng lại, ta có 

A\(\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)

=> A<=3/2

Dấu = xảy ra <=> \(a=b=c=\sqrt{3}\)

^_^

NV
5 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Phạm Vũ Trí Dũng - Toán lớp 8 | Học trực tuyến

24 tháng 5 2017

Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn

24 tháng 5 2017

bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x) 

VT (ở đề bài) = a+b+c 

<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0

từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r 

AH
Akai Haruma
Giáo viên
26 tháng 6 2020

Lời giải:

Áp dụng BĐT AM-GM:
$\frac{a^2}{4}+\frac{1}{a^2}\geq 1$

$\frac{b^2}{4}+\frac{1}{b^2}\geq 1$

$\frac{c^2}{4}+\frac{1}{c^2}\geq 1$

$\frac{3}{4}a^2\geq \frac{3}{2}; \frac{3}{4}b^2\geq \frac{3}{2}; \frac{3}{4}c^2\geq \frac{3}{2}$ do $a,b,c\geq \sqrt{2}$

Cộng theo vế các BĐT trên ta có:

$P\geq \frac{15}{2}$

Vậy $P_{\min}=\frac{15}{2}$ khi $a=b=c=\sqrt{2}$

6 tháng 7 2016

Trả lời hộ mình đi

6 tháng 1 2018

bài n t vừa làm mà, vào link này nhé 

https://olm.vn/hoi-dap/question/1129328.html