K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

\(BĐT\Leftrightarrow\frac{a}{\sqrt{a\left(b+c\right)}}+\frac{b}{\sqrt{b\left(a+c\right)}}+\frac{c}{\sqrt{c\left(a+b\right)}}>2\)

Áp dụng BđT cô si với hai số ko âm :

\(\sqrt{a\left(b+c\right)}\le\frac{a+b+c}{2}\Rightarrow\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)

CMTT : \(\frac{b}{\sqrt{b\left(c+a\right)}}\ge\frac{2b}{a+b+c};\frac{c}{\sqrt{c\left(a+b\right)}}\ge\frac{2c}{a+b+c}\)

Cộng Vế với vế của ba bpt trên ta đc đpcm .

Dấu '=' xảy ra khi : a = b + c ; b = c+ a ; a = c + b 

<=> a + b + c = 2 ( a+  b + c ) => a+ b +c = 0 ( VN )

=> Ko có dấu =  

 

10 tháng 7 2019

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

3 tháng 5 2018

Ta có :\(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+b+c}{2}}=\frac{2a}{a+b+c}\) (bđt AM-GM)

Tương tự \(\hept{\begin{cases}\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\\\sqrt{\frac{c}{b+a}}\ge\frac{2c}{a+b+c}\end{cases}}\)

\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{b+a}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=c\\b+c=a\\a+c=b\end{cases}}\) \(\Rightarrow a+b+c=0\) vô lý vì \(a;b;c>0\)

Vậy \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{b+a}}>2\)

12 tháng 11 2017

các bạn giúp mình nha càng nhanh càng tốt

22 tháng 5 2018

Chờ mình nhé 

25 tháng 5 2017

Nhìn đề thấy mệt nên sửa lại đỡ mệt.

Cho \(\hept{\begin{cases}a,b,c\ge0\\b^2=\frac{a^2+c^2}{2}\end{cases}}\)

Chứng minh rằng: \(\frac{1}{a+b}+\frac{1}{b+c}=\frac{2}{c+a}\)

Giải:

Theo đề ta có:

\(b^2=\frac{a^2+c^2}{2}\)

\(\Leftrightarrow b^2-a^2=c^2-b^2\)

\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=\left(c+b\right)\left(c-b\right)\)

\(\Leftrightarrow\frac{b-a}{b+c}=\frac{c-b}{a+b}\)

Ta cần chứng minh:

\(\frac{1}{a+b}+\frac{1}{b+c}=\frac{2}{c+a}\)

\(\Leftrightarrow\left(\frac{1}{a+b}-\frac{1}{c+a}\right)+\left(\frac{1}{b+c}-\frac{1}{c+a}\right)=0\)

\(\Leftrightarrow\frac{c-b}{\left(a+b\right)\left(c+a\right)}+\frac{a-b}{\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow\frac{b-a}{\left(b+c\right)\left(c+a\right)}+\frac{a-b}{\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow\frac{b-a+a-b}{\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow0=0\)

Vậy....

NV
9 tháng 3 2020

a/ \(VT\ge\frac{\left(\sqrt{b}+\sqrt{c}\right)^2}{2\sqrt{a}}+\frac{\left(\sqrt{c}+\sqrt{a}\right)^2}{2\sqrt{b}}+\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\sqrt{c}}\)

\(VT\ge\frac{\left(\sqrt{b}+\sqrt{c}+\sqrt{c}+\sqrt{a}+\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

\(VT\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)

\(VT\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{abc}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

b/ \(VT=\sum\frac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\)

\(VT\le\sum\frac{x}{x+\sqrt{xz}+\sqrt{xy}}=\sum\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Dấu "=" xảy ra khi \(x=y=z=1\)

9 tháng 3 2020

Bài 1 :

Áp dụng BĐT Cô - si cho 2 số không âm ta có :

\(VT=\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\Sigma_{cyc}\sqrt{\frac{bc}{a}}\right)\)

\(\Leftrightarrow\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)+\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)\)

\(\Leftrightarrow\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)

\(+3\sqrt[6]{abc}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

2 tháng 7 2016

Bài 1:

Đặt \(a^2=x;b^2=y;c^2=z\)

Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)

Áp dụng BĐT cô si ta có:

\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)

\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)

Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)

Cộng lại ta được:

\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)

Sau đó bình phương hai vế rồi

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng

Vậy...

Bài 2:

Trước hết ta chứng minh bất đẳng thức sau:

\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)

Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau: 

\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)

\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)

\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)

Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)

Từ đó ta có:

\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)

Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có 

\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)

Dấu = xảy ra khi a=b=c 

c bạn tự làm nhé mình mệt rồi :D

2 tháng 7 2016

- Ôi má ơi, má patient dử dậy :)

3 tháng 10 2015

Áp dụng bất đẳng thức trung bình cộng - trung bình nhân:

\(a+b+c=a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\)

\(\Rightarrow\frac{a+b+c}{a}\ge\frac{2\sqrt{a}\sqrt{b+c}}{a}=\frac{2\sqrt{b+c}}{\sqrt{a}}\)

\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)

Tương tự với 2 số còn lại, cộng theo vế ta được \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra khi \(a=b+c;b=c+a;c=a+b\text{ }\Rightarrow a+b+c=2\left(a+b+c\right)\)

\(\Rightarrow a+b+c=0\text{ (loại)}\)

Vậy đẳng thức không xảy ra, ta có đpcm.