Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Biến đổi tương đương:
\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)
\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)
\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)
Vậy BĐT ban đầu đúng
Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)
Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương
Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:
\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)
\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
Lời giải:
Ta có:
\(ab+bc+ac=abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Xét \(a^4+b^4-(ab^3+a^3b)=(a-b)(a^3-b^3)\)
\(=(a-b)^2(a^2+ab+b^2)\geq 0\forall a,b> 0\)
\(\Rightarrow a^4+b^4\geq ab^3+a^3b\)
\(\Rightarrow 2(a^4+b^4)\geq (a^3+b^3)(a+b)\)
\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{(a^3+b^3)(a+b)}{2ab(a^3+b^3)}=\frac{a+b}{2ab}=\frac{1}{2a}+\frac{1}{2b}\)
Thực hiện tương tự với các phân thức còn lại:
\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}+\frac{b^4+c^4}{bc(b^3+c^3)}+\frac{c^4+a^4}{ca(c^3+a^3)}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=3\)
Ta có: \(a^3+b^3+c^3\ge3abc\) ( BĐT Cauchy )
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{abc}{b}+\dfrac{abc}{c}+\dfrac{abc}{a}\)
Hay \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ac+ab+bc\left(đpcm\right)\)
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(\dfrac{a^3}{b}+ab\) ≥ \(2\sqrt{\dfrac{a^3}{b}.ab}=2\sqrt{a^4}=2a^2\left(1\right)\)
\(\dfrac{b^3}{c}+bc\) ≥ \(2\sqrt{\dfrac{b^3}{c}.bc}=2\sqrt{b^4}=2b^2\left(2\right)\)
\(\dfrac{c^3}{a}+ac\) ≥ \(2\sqrt{\dfrac{c^3}{a}.ac}=2\sqrt{c^4}=2c^2\left(3\right)\)
Cộng từng vế của ( 1 ; 2 ; 3) , ta có :
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ac\) ≥ \(2\left(a^2+b^2+c^2\right)\) ( * )
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(a^2+b^2\) ≥ \(2ab\left(4\right)\)
\(b^2+c^2\) ≥ \(2bc\left(5\right)\)
\(c^2+a^2\) ≥ \(2ac\left(6\right)\)
Cộng từng vế của ( 4 ; 5 ; 6) , ta có :
\(2\left(a^2+b^2+c^2\right)\) ≥ \(2\left(ab+bc+ac\right)\) ( ** )
Từ ( * ; ** ) , ta có :
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ac\) ≥ \(2\left(ab+bc+ac\right)\)
⇔ \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\) ≥ \(ab+bc+ac\)
Dễ dàng chứng minh được với \(a,b>0:\)
\(a^3+b^3\ge ab\left(a+b\right)\) \(\Leftrightarrow\) \(\frac{a^3}{b}+b^2\ge a\left(a+b\right)\) \(\left(1\right)\)
Hoàn toàn tương tự với vòng hoán vị theo bđt trên, ta có:
\(\frac{b^3}{c}+c^2\ge b\left(b+c\right)\) \(\left(2\right)\) và \(\frac{c^3}{a}+a^2\ge c\left(c+a\right)\) \(\left(3\right)\)
Cộng \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) vế theo vế, ta được:
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+\left(a^2+b^2+c^2\right)\ge a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)=ab+bc+ca+\left(a^2+b^2+c^2\right)\)
Vì \(a,b,c>0\) nên \(a^2+b^2+c^2\ne0\)
Do đó, trừ cả hai vế của bđt trên cho \(a^2+b^2+c^2\) ta được bất đẳng thức cần phải chứng minh, tức là:
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c\)
a3/b+b3/c+c3/a=a4/ab+b4/bc+c4/ca>=(a2+b2+c2)2/ab+bc+ac>=(ab+bc+ca)2/ab+bc+ca=ab+bc+ca
dấu đẳng thức xảy ra<=>x=y=z
Áp dung tính chất dãy tỉ số bằng nhau :
a^3/b +a^3/b +b^2 \(\ge\)3.a^2
\(\Rightarrow\)2a^3/b +b^2>=3a^2
Tương tự : +2b^3/c +c^2 \(\ge\)3.b^2 (1)
+2c^3/a +a^2 \(\ge\)3.c^2 (2)
Ta cộng (1) và (2) được :
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) \(\ge\)3.(a^2+b^2+c^2)
\(\Rightarrow\)a^3/b+b^3/c+c^3/a \(\ge\)a^2+b^2+c^2
Mặt khác : a^2+b^2+c^2 \(\ge\)ab+bc+ca
Nên : a^3/b+b^3/c+c^3/a \(\ge\)ab+bc+ca
Vậy đpcm
\(\dfrac{a^3}{b}+ab+\dfrac{b^3}{c}+bc+\dfrac{c^3}{a}+ca\ge2\sqrt{\dfrac{a^4b}{b}}+2\sqrt{\dfrac{b^4c}{c}}+2\sqrt{\dfrac{c^4a}{a}}=2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
áp dụng AM GM ta có a^3/b+ab>=2a^2
chứng minh tương tự => a^3/b+b^3/c+c^3/a>=2(a^2+b^2+c^2)-(ab+bc+ca)
mà ta có a^2+b^2+c^2>=(ab+bc+ca)
=>a^3/b+b^3/c+c^3/a>= ab+bc+ca
"=" xảy ra khi a=b=c