Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM ta có: \(\frac{a^3}{b}+ab\geq 2a^2\)
Thực hiện tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\)
Theo hệ quả của BĐT AM-GM thì:
\(a^2+b^2+c^2\geq ab+bc+ac\)
Do đó, \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq ab+bc+ac\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c>0\)
Áp dụng liên tiếp AM-GM và Cauchy-Schwarz ta có:
\(\begin{align*} \dfrac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}&\ge \dfrac{a^2+ab+1}{\sqrt{a^2+ab+c^2+\left (a^2+b^2 \right )}}\\ &=\dfrac{a^2+ab+1}{\sqrt{a^2+ab+1}}\\ &=\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}\\ &=\dfrac{1}{\sqrt{5}}\sqrt{\left ( \dfrac{9}{4}+\dfrac{3}{4}+1+1 \right )\left [\left ( a+\dfrac{b}{2} \right )^2+\dfrac{3b^2}{4}+a^2+c^2 \right ]}\\ &\ge \dfrac{1}{\sqrt{5}}\left [ \dfrac{3}{2}\left (a+\dfrac{b}{2} \right )+\dfrac{3}{4}b+a+c \right ]\\ &=\dfrac{1}{\sqrt{5}}\left ( \dfrac{5}{2}a+\dfrac{3}{2}b+c \right ) \end{align*}\)
Chứng minh tương tự, cộng lại ta có đpcm.
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
bài này cuốn hút thật, lâu lắm ms thấy . xí bài này nhé nghĩ đã lát quay lại làm
\(BĐT\Leftrightarrow\sum\dfrac{2bc}{1+a^2}\le\dfrac{3}{2}\Leftrightarrow\sum\dfrac{-2bc}{2a^2+b^2+c^2}\ge-\dfrac{3}{2}\)
\(\Leftrightarrow\sum\dfrac{2a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}\ge\dfrac{3}{2}\)
ÁP dụng BĐT cauchy-schwarz:
\(\sum\dfrac{2a^2}{2a^2+b^2+c^2}\ge\dfrac{2\left(a+b+c\right)^2}{4\left(a^2+b^2+c^2\right)}=\dfrac{\left(a+b+c\right)^2}{2\left(a^2+b^2+c^2\right)}\)
và \(\sum\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}=\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(a-b\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(a-c\right)^2}{2b^2+a^2+c^2}\ge\dfrac{4\left(a-c\right)^2}{4\left(a^2+b^2+c^2\right)}=\dfrac{\left(a-c\right)^2}{a^2+b^2+c^2}\)
( Lưu ý : \(\left(c-a\right)^2=\left(a-c\right)^2\)) (1)
Do vậy cần chứng minh \(\dfrac{\left(a+b+c\right)^2+2\left(a-c\right)^2}{2\left(a^2+b^2+c^2\right)}\ge\dfrac{3}{2}\)
\(\Leftrightarrow2\left(a+b+c\right)^2+4\left(a-c\right)^2\ge6\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow ab+bc-ac-b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\ge0\) (*)
(*) không phải luôn đúng, tuy nhiên ta có thể ép cho nó đúng .
bằng cách đáng giá tương tự BĐT (1) :
\(\left\{{}\begin{matrix}\dfrac{\left(b-a\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(c-a\right)^2}{2b^2+a^2+c^2}\ge\dfrac{\left(b-a\right)^2}{a^2+b^2+c^2}\\\dfrac{\left(a-b\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(c-b\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(c-a\right)^2}{2b^2+a^2+c^2}\ge\dfrac{\left(c-b\right)^2}{a^2+b^2+c^2}\end{matrix}\right.\)
ta thu được BĐT cần chứng minh tương đương \(\left\{{}\begin{matrix}\left(b-c\right)\left(c-a\right)\ge0\left(3\right)\\\left(c-a\right)\left(a-b\right)\ge0\left(4\right)\end{matrix}\right.\)
Dễ thấy \(\left(a-b\right)\left(b-c\right).\left(b-c\right)\left(c-a\right).\left(c-a\right)\left(a-b\right)=\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2\ge0\)
tích của chúng là 1 số không âm nên có ít nhất 1 số không âm .Chứng tỏ có ít nhất 1 BĐT đúng
Do đó ta có đpcm
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Ta có: \(a^2+b^2+c^2\ge ab+bc+ca=3\)
Do \(a>0\Rightarrow\left(a-1\right)^2\left(a+\frac{1}{2}\right)\ge0\)
\(\Rightarrow a^3-\frac{3}{2}a^2+\frac{1}{2}\ge0\Rightarrow a^3\ge\frac{3}{2}a^2-\frac{1}{2}\)
Tương tự ta có: \(b^3\ge\frac{3}{2}b^2-\frac{1}{2}\) ; \(c^3\ge\frac{3}{2}c^2-\frac{1}{2}\)
Cộng vế với vế:
\(a^3+b^3+c^3\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{3}{2}\ge3.\frac{3}{2}-\frac{3}{2}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(P=\frac{b^2c^2+c^2a^2+a^2b^2}{abc}\Rightarrow P^2=\frac{b^4c^4+c^4a^4+a^4b^4+2a^2b^2c^2\left(a^2+b^2+c^2\right)}{a^2b^2c^2}\)
\(P^2\ge\frac{a^2b^2c^2\left(a^2+b^2+c^2\right)+2a^2b^2c^2}{a^2b^2c^2}=\frac{3a^2b^2c^2}{a^2b^2c^2}=3\)
\(\Rightarrow P\ge\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Áp dụng BĐT Cauchy-Schwarz dạng engel:
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+b+c+c+a}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cách khác :
Áp dụng BĐT AM-GM cho 2 số dương ta có:
\(\dfrac{a^2}{a+b}+\dfrac{a+b}{4}\ge2\sqrt{\dfrac{a^2\left(a+b\right)}{4\left(a+b\right)}}=a\)
Tương tự: \(\dfrac{b^2}{b+c}+\dfrac{b+c}{4}\ge b;\dfrac{c^2}{c+a}+\dfrac{c+a}{4}\ge c\)
Cộng theo vế ta được:
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}+\dfrac{a+b+c}{2}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{a+b+c}{2}\)(đpcm)
\(2a^2+2b^2+2ab+2ac+2bc< 0\)
\(\Leftrightarrow\left(a+b+c\right)^2+a^2+b^2-c^2< 0\)
\(\Leftrightarrow a^2+b^2< c^2-\left(a+b+c\right)^2\le c^2\)
\(\Rightarrow a^2+b^2< c^2\)
\(a^2+b^2+c^2=ab+ac+bc\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a^2+c^2-2ac\right)+\left(a^2+b^2-2ab\right)+\left(c^2+b^2-2bc\right)=0\)
\(\Leftrightarrow\left(a-c\right)^2+\left(a-b\right)^2+\left(b-c\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-c=0\\a-b=0\\b-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=c\\a=b\\b=c\end{matrix}\right.\)\(\Rightarrow a=b=c\)
\(20\left(a^2+b^2\right)+2c^2=16a^2+c^2+16b^2+c^2+4a^2+4b^2\)
\(\ge8ab+8ac+8bc=8\left(Am-Gm\right)\)
=> \(10\left(a^2+b^2\right)+c^2\ge4\)