K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:

Đặt biểu thức vế trái là $P$

Áp dụng BĐT AM-GM:
\(\frac{1}{(a+1)^2+b^2+1}=\frac{1}{a^2+2a+1+b^2+1}=\frac{1}{a^2+b^2+2a+2}\leq \frac{1}{2ab+2a+2}=\frac{1}{2}.\frac{1}{ab+a+1}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow P\leq \frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)(1)\)

Từ $abc=1$ ta suy ra :

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=\frac{c}{abc+ac+c}+\frac{ac}{bc.ac+b.ac+ac}+\frac{1}{ca+c+1}\)

\(=\frac{c}{1+ac+c}+\frac{ac}{c+1+ac}+\frac{1}{ac+c+1}=\frac{c+ac+1}{c+ac+1}=1(2)\)

Từ \((1);(2)\Rightarrow P\leq \frac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

NV
17 tháng 8 2020

\(3=ab+bc+ca\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)

\(\Rightarrow VT\le\frac{1}{abc+a^2\left(b+c\right)}+\frac{1}{abc+b^2\left(c+a\right)}+\frac{1}{abc+c^2\left(a+b\right)}\)

\(\Rightarrow VT\le\frac{1}{a\left(ab+bc+ca\right)}+\frac{1}{b\left(ab+bc+ca\right)}+\frac{1}{c\left(ab+bc+ca\right)}\)

\(\Rightarrow VT\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

9 tháng 11 2016

d/ Đặt \(x=a+b\) , \(y=b+c\) , \(z=c+a\)

thì : \(a=\frac{x+z-y}{2}\) ; \(b=\frac{x+y-z}{2}\) ; \(c=\frac{y+z-x}{2}\)

Ta có : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{\frac{x+z-y}{2}}{y}+\frac{\frac{x+y-z}{2}}{z}+\frac{\frac{y+z-x}{2}}{x}\)

\(=\frac{z+x-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{z}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}-3\right)\)

\(=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z}\right)-\frac{3}{2}\ge\frac{1}{2}.6-\frac{3}{2}=\frac{3}{2}\)

9 tháng 11 2016

b/ \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)

\(\Leftrightarrow\left(a^2b^2-2abc+c^2\right)+\left(b^2c^2-2abc+a^2\right)+\left(c^2a^2-2abc+b^2\right)\ge0\)

\(\Leftrightarrow\left(ab-c\right)^2+\left(bc-a\right)^2+\left(ca-b\right)^2\ge0\) (luôn đúng)

Vậy bđt ban đầu dc chứng minh.

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}=\frac{c^2}{c^2(a+b)}+\frac{a^2}{a^2(b+c)}+\frac{b^2}{b^2(c+a)}+\frac{(\sqrt[3]{abc})^2}{2abc}\)

\(\geq \frac{(c+a+b+\sqrt[3]{abc})^2}{c^2(a+b)+a^2(b+c)+b^2(c+a)+2abc}=\frac{(a+b+c+\sqrt[3]{abc})^2}{(a+b)(b+c)(c+a)}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

NM
8 tháng 5 2021

Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)

Suy ra    \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)

Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)

dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)

2 tháng 9 2019

Bài 2 dùng sos:)) Nhưng em không chắc đâu, chỗ dùng mấy cái kí hiệu tổng ý, nó rất rối, nhưng em lại lười viết ra:)

BĐT \(\Leftrightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}-1+\frac{\left(a+b+c\right)^2}{abc}-27\ge0\)

\(\Leftrightarrow\frac{\Sigma\frac{a+b+7c}{2}\left(a-b\right)^2}{abc}-\frac{\Sigma\frac{1}{2}\left(a-b\right)^2}{a^2+b^2+c^2}\ge0\)

\(\Leftrightarrow\Sigma\frac{1}{2}\left(a-b\right)^2\left(\frac{a+b+7c}{abc}-\frac{1}{a^2+b^2+c^2}\right)\ge0\)

Ta có: \(\frac{a+b+7c}{abc}-\frac{1}{a^2+b^2+c^2}=\frac{\left(a^2+b^2+c^2\right)\left(a+b+7c\right)-abc}{abc}\)

\(\ge\frac{3\sqrt[3]{\left(abc\right)^2}.3\sqrt[3]{7abc}-abc}{abc}=\frac{3\sqrt[3]{7}.abc-abc}{abc}>0\).

Từ đó ta có thể suy ra đpcm.

2 tháng 9 2019

Nãy nhầm vị trí:v Làm lại bài 3:

Từ giả thiết suy ra \(\frac{a}{a+1}=1-\frac{b}{b+1}+1-\frac{c}{c+1}\)

\(=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)

Tương tự hai BĐT còn lại và nhân theo vế sẽ thu được t= abc \(\ge8\) (1)

Mặt khác nhân hai vế của giả thiết với (a+1)(b+1)(c+1) thu được:

\(2\left(a+1\right)\left(b+1\right)\left(c+1\right)=\Sigma a\left(b+1\right)\left(c+1\right)\)

\(\Rightarrow a+b+c=abc-2\). Từ (1) suy ra cả hai vế đều dương.

Do đó \(\sqrt{a+b+c}=\sqrt{abc-2}\)

\(\Rightarrow\sqrt{3abc\left(a+b+c\right)}=\sqrt{3abc\left(abc-2\right)}\). Mặt khác, theo hệ quả quen thuộc của bđt AM- GM thì \(3abc\left(a+b+c\right)\le\left(ab+bc+ca\right)^2\)

Do đó \(ab+bc+ca\ge\sqrt{3abc\left(abc-2\right)}=\sqrt{3t\left(t-2\right)}\)
Mặt khác ta dễ dàng chứng minh được \(3t\left(t-2\right)\ge12^2\left(\text{với }t\ge8\right)\)

Như vậy ta có đpcm.

P.s: Mong là lần này không bị nhầm

16 tháng 2 2021

giúp với