Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tương thẳng cô-si 3 số cho giả thiết và cái gt đi,t dùng đt ko làm đc
Áp dụng bất đẳng thức AM-GM:
\(\dfrac{a}{b^2+c^2}+\left(b^2+c^2\right)\ge2\sqrt{a}\)
\(\dfrac{b}{c^2+a^2}+\left(c^2+a^2\right)\ge2\sqrt{b}\)
\(\dfrac{c}{a^2+b^2}+\left(a^2+b^2\right)\ge2\sqrt{c}\)
Cộng theo vế:
\(A+2\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
Mặt khác: \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\left(a+b+c\right)\)
\(\left(3a+3b+3c\right)^2\ge27\left(a^2+b^2+c^2\right)=27\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{27}\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt[4]{27}\)
\(A\ge\sqrt[4]{27}-2\)
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(A=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)
\(A\ge\dfrac{\left(1+1+1\right)^2}{3+ab+bc+ac}=\dfrac{9}{3+ab+bc+ac}\)
Mặt khác,theo hệ quả AM-GM: \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}\le\dfrac{3^2}{3}=3\)
\(\Rightarrow\dfrac{9}{3+ab+bc+ac}\ge\dfrac{9}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
Đầu tiên ta cm bđt:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(tự cm)
Áp dụng ta có:
\(A=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\ge\dfrac{9}{3+ab+bc+ca}\)
Cần cm:\(ab+bc+ca\le3\)
Hay \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
=>đpcm
Lời giải:
Ta có:
\(A=\sqrt[3]{a+b+1}+\sqrt[3]{b+c+1}+\sqrt[3]{a+c+1}\)
\(\Rightarrow A\sqrt[3]{9}=\sqrt[3]{9(a+b+1)}+\sqrt[3]{9(b+c+1)}+\sqrt[3]{9(a+c+1)}\)
Áp dụng BĐT Cauchy ta có:
\(\sqrt[3]{9(a+b+1)}\leq \frac{3+3+(a+b+1)}{3}\)
\(\sqrt[3]{9(b+c+1)}\leq \frac{3+3+(b+c+1)}{3}\)
\(\sqrt[3]{9(c+a+1)}\leq \frac{3+3+(c+a+1)}{3}\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\sqrt[3]{9}A\leq \frac{7+a+b}{3}+\frac{7+b+c}{3}+\frac{7+a+c}{3}\)
\(\Leftrightarrow \sqrt[3]{9}A\leq \frac{21+2(a+b+c)}{3}=\frac{21+2.3}{3}=9\)
\(\Rightarrow A\leq \frac{9}{\sqrt[3]{9}}=3\sqrt[3]{3}\)
Vậy GTLN của $A$ là \(3\sqrt[3]{3}\)
Dấu bằng xảy ra khi \(a=b=c=1\)
\(\left\{{}\begin{matrix}x=\sqrt[3]{a+b+1}\\y=\sqrt[3]{b+c+1}\\z=\sqrt[3]{a+c+1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=A\\x^3+y^3+z^3=9\end{matrix}\right.\)
\(A^3=9+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
BDT ; \(3.\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\dfrac{8}{9}\left(x+y+z\right)^3=\dfrac{8}{9}A^3\)\(\Leftrightarrow A^3\le9+\dfrac{8}{9}A^3\Leftrightarrow A^3\le81;A\le\sqrt[3]{81}=3.\sqrt{3}\)
dang thuc ; x=y=z <=> a=b=c=1
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
Nhân cả 2 vế với a+b+c
Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0
dễ rồi nhé
b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)
=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)
=>Pmax=3/4 <=> x=y=z=1/3
Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(\frac{3}{2}\right)^2\Leftrightarrow a^2+b^2+c^2\ge\frac{3}{4}\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}a=b=c\\a+b+c=\frac{3}{2}\end{cases}\Leftrightarrow}a=b=c=\frac{1}{2}\)
Lời giải:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(a^3+a^3+1\geq 3\sqrt[3]{a^6}=3a^2\)
\(b^3+b^3+1\geq 3\sqrt[3]{b^6}=3b^2\)
\(c^3+c^3+1\geq 3\sqrt[3]{c^6}=3c^2\)
Cộng theo vế các BĐT vừa thu được ta có:
\(2(a^3+b^3+c^3)+3\geq 3(a^2+b^2+c^2)\)
\(\Leftrightarrow 2A+3\geq 9\)
\(\Leftrightarrow A\geq 3\)
Vậy \(A_{\min}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)