K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

Bunhiacopxkhi \(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\) 

\(\Rightarrow\sqrt{\left(a^2+b+c\right)\left(1+b+c\right)}\ge a+b+c\) 

Ta có:\(A=\frac{a}{\sqrt{a^2+b+c}}+\frac{b}{\sqrt{b^2+c+a}}+\frac{c}{\sqrt{c^2+a+b}}\le\frac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\)\(\Rightarrow\sqrt{3}A=\frac{\sqrt{3a}\sqrt{a+ab+ac}+\sqrt{3b}\sqrt{b+bc+ba}+\sqrt{3c}\sqrt{c+ca+cb}}{a+b+c}\) 

\(\Rightarrow\sqrt{3}A\le\frac{4a+ab+ac+4b+bc+ba+4c+ca+cb}{a+b+c}=\frac{4\left(a+b+c\right)+2\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\) 

\(\Rightarrow\sqrt{3}A\le\frac{2\left(a+b+c\right)+\frac{\left(a+b+c\right)^2}{3}}{a+b+c}=\frac{6+a+b+c}{3}\le\frac{9}{3}=3\) 

\(\Rightarrow A\le\sqrt{3}\)

15 tháng 11 2019

Tham khảo

Câu hỏi của Châu Trần - Toán lớp 9 - Học toán với OnlineMath

15 tháng 11 2019

à xl gửi lộn

17 tháng 1 2020

bạn có đang on không chat vs mình đi

24 tháng 3 2020

Trước khi đọc lời giải hãy thăm nhà em trước nhé ! See method from solution! Cảm ơn mn!

Ok, giờ chú ý:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab.ca+abc+ab}\)

\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}=1\) với abc = 1.

Như vậy: \(VT=\sqrt{\left(\Sigma\frac{1}{\sqrt{ab+a+2}}\right)^2}\le\sqrt{3\left(\Sigma\frac{1}{\frac{\left(ab+a+1\right)}{3}+\frac{\left(ab+a+1\right)}{3}+\frac{\left(ab+a+1\right)}{3}+1}\right)}\)

\(\le\sqrt{\frac{3}{16}\left[\Sigma\left(\frac{9}{ab+a+1}+1\right)\right]}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

26 tháng 12 2017

https://goo.gl/BjYiDy