Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
a/Xét hiệu ta có: \(\frac{a^3}{b}+\frac{b^3}{b}-a^2-ab=\left(a+b\right)\left(\frac{a^2-ab+b^2}{b}\right)-a\left(a+b\right)\)
\(=\left(a+b\right)\left(\frac{a^2}{b}-2a+b\right)=\left(a+b\right)\left(\frac{a}{\sqrt{b}}+\sqrt{b}\right)^2\ge0\)
\(\RightarrowĐPCM\)
b/Tương tự ở câu a, ta cũng có:
\(\frac{a^3}{b}\ge a^2+ab-b^2\left(1\right),\frac{b^3}{c}\ge b^2+bc-c^2\left(2\right),\frac{c^3}{a}\ge c^2+ca-a^2\left(3\right)\)
Cộng (1),(2) và (3) \(VT\ge a^2+ab-b^2+b^2+bc-c^2+C^2+bc-a^2=ab+bc+ca\left(ĐPCM\right)\)
\(\frac{a^4}{ab+ac}+\frac{b^4}{ab+bc}+\frac{c^4}{ac+bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Hoặc bạn dùng AM-GM kiểu:
\(\frac{a^3}{b+c}+a\left(b+c\right)\ge2a^2\)
Làm tương tự với 2 cái sau và cộng lại
Ngoài ra có cách dùng AM-GM cho 3 số như sau:
Ta có: \(\frac{a^3}{b+c}+\frac{a^3}{b+c}+\frac{\left(b+c\right)^2}{8}\ge\frac{3}{2}a^2\)
Tương tự rồi cộng lại:
\(2VT\ge\frac{3}{2}\left(a^2+b^2+c^2\right)+\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{8}\)
\(\ge1\left(a^2+b^2+c^2\right)\)
Sorry, tới đây em bí rồi ạ:v
Tự nhiên lục được cái này :'(
3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
Do a,b,c đối xứng , giả sử \(a\ge b\ge c\) \(\Rightarrow\hept{\begin{cases}a^2\ge b^2\ge c^2\\\frac{a}{b+c}\ge\frac{b}{a+c}\ge\frac{c}{a+b}\end{cases}}\)
Áp dụng BĐT Trư - bê - sép , ta có :
\(a^2.\frac{a}{b+c}+b^2.\frac{b}{a+c}+c^2.\frac{c}{b+c}\ge\frac{a^3+b^3+c^3}{3}.\left(\frac{a}{b+C}+\frac{b}{a+c}+\frac{c}{a+b}\right)=\frac{1}{3}.\frac{3}{2}=\frac{1}{2}\)
\(vậy\) \(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{1}{2}\)( Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Chebyshev như vầy nhé :
Ta có :
\(3.\Sigma\left(a^2.\frac{a}{b+c}\right)\ge\left(a^2+b^2+c^2\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+c}\right)=\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
Áp dụng bất đẳng thức Nesbit , ta có :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Suy ra : \(3.\Sigma\left(a^2.\frac{a}{b+c}\right)\ge\frac{3}{2}\)
<=> \(\Sigma\left(a^2.\frac{a}{b+c}\right)\ge\frac{1}{2}\)
Đẳng thức xảy ra <=> a = b = c = \(\frac{1}{\sqrt{3}}\)
\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\) ; \(\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)
Cộng vế với vế:
\(VT\ge a+b+c-\frac{1}{2}\left(ab+bc+ca\right)\ge3-\frac{1}{6}\left(a+b+c\right)^2=3-\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)