Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Bạn đặt A = a/ (1 + a^2). => A + a^2A = a => a^2A - a + A = 0. ta có delta = 1 - 4A^2 ( gọi ẩn số là a). => để pt có nghiệm <=> 1 - 4A^2 >= 0 => để phương trình có nghiệm => 1 - 4A^2 >= 0 => 1 >= 4A^2 => A =< 1/2. => max A = 1/2. bạn giải tương tự B = b/(1+b^2), C = c/(1 + c^2) rồi cộng vào nhau là ra ngay thôi. Đây là cách giải bằng delta.
b)bạn có (a^2 - b^2)/c = ((a+b)(a-b))/c >= (c + c)(a-b)/c = 2(a - b). Bạn có c =< b ( theo đề bài) = > c + b =< 2b => (c + b) =<2b => (c + b)/b <= 2 => (c + b)/a <= 2. từ đó ta có (c^2 - b^2)/a = (c -b )(c + b)/a >= 2(c - b).
chứng minh tương tự:(a + c)/b > 1 => (a^2 - c^2)/b >= a - c.( sr ngại gõ lắm) => cộng 3 vế ta được đpcm
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
Bài gắt quá, em cày mãi không ra:( nào là phân tích vế phải,sos từm lưm... Cuối cùng chuyển vế cho gọn:v Nhưng mà em ko chắc :((
BĐT \(\Leftrightarrow\Sigma_{cyc}\left(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}\right)\ge0\)\(\Leftrightarrow\Sigma_{cyc}\frac{a^2b+a^2c-ab^2+ac^2}{\left(b^2+c^2\right)\left(b+c\right)}\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\frac{ab\left(a-b\right)-ac\left(c-a\right)}{\left(b^2+c^2\right)\left(b+c\right)}\ge0\)\(\Leftrightarrow\Sigma_{cyc}\left[\frac{ab\left(a-b\right)}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{ab\left(a-b\right)}{\left(c^2+a^2\right)\left(c+a\right)}\right]\ge0\)
\(\Leftrightarrow\Sigma_{cyc}ab\left(a-b\right)\left[\frac{\left(c^2+a^2\right)\left(c+a\right)-\left(b^2+c^2\right)\left(b+c\right)}{\left(b^2+c^2\right)\left(c^2+a^2\right)\left(b+c\right)\left(c+a\right)}\right]\ge0\)
\(\Leftrightarrow\Sigma_{cyc}ab\left(a-b\right)\left[\frac{\left(a-b\right)\left(a^2+b^2+c^2+ab+bc+ca\right)}{\left(b^2+c^2\right)\left(c^2+a^2\right)\left(b+c\right)\left(c+a\right)}\right]\ge0\)
\(\Leftrightarrow\left(a^2+b^2+c^2+ab+bc+ca\right).\Sigma_{cyc}\frac{ab\left(a-b\right)^2}{\left(b^2+c^2\right)\left(c^2+a^2\right)\left(b+c\right)\left(c+a\right)}\ge0\) (đúng)
Đẳng thức xảy ra khi a = b = c
Áp dụng Cô si cho 2 số không âm ta có:
\(\hept{\begin{cases}\frac{a}{b^2}+\frac{1}{a}\ge\frac{2}{b}\\\frac{b}{c^2}+\frac{1}{b}\ge\frac{2}{c}\\\frac{c}{a^2}+\frac{1}{c}\ge\frac{2}{a}\end{cases}}\)\(\Rightarrow\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Rightarrow\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
dâu = xảy ra khi a=b=c
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
Đề phải là \(a;b;c>0\) lần sau chú ý mà gõ -_-
Ta có : \(\frac{a^3}{b+c}+\frac{a\left(b+c\right)}{4}\ge2\sqrt{\frac{a^3}{b+c}.\frac{a\left(b+c\right)}{4}}=a^2\)(BĐT Cosi)
Tương tự \(\hept{\begin{cases}\frac{b^3}{a+c}+\frac{b\left(a+c\right)}{4}\ge b^2\\\frac{c^3}{a+b}+\frac{c\left(a+b\right)}{4}\ge c^2\end{cases}}\)
Cộng vế với vế của các BĐT vừa chứng minh lại ta được :
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{ab+ac+bc}{2}\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{ab+ac+bc}{2}\)
\(\ge a^2+b^2+c^2-\frac{a^2+b^2+c^2}{2}=\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\) (Do \(a^2+b^2+c^2\ge ab+ac+bc\))
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
Giả sử: \(a\ge b\ge c\Rightarrow\hept{\begin{cases}a^2\ge b^2\ge c^2\\\frac{a}{b+c}\ge\frac{b}{a+c}\ge\frac{c}{a+b}\end{cases}}\)
Áp dụng BĐT Chebyshev ta có:
\(a^2.\frac{a}{b+c}+b^2.\frac{b}{a+c}+c^2.\frac{c}{a+b}\)\(\ge\frac{a^2+b^2+c^2}{3}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{b+c}\right)\)\(=\frac{1}{3}.\frac{3}{2}=\frac{1}{2}\)
Vậy \(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\) Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
Áp dụng BĐT AM - GM ta có :
\(VT=a-\frac{ab^2}{a+b^2}+b-\frac{bc^2}{b+c^2}+c-\frac{ca^2}{c+a^2}=\left(a+b+c\right)\)
\(-\left(\frac{ab^2}{a+b^2}+\frac{bc^2}{b+c^2}+\frac{ca^2}{c+a^2}\right)\)
\(\ge\left(a+b+c\right)-\left(\frac{ab^2}{2\sqrt{ab^2}}+\frac{bc^2}{2\sqrt{bc^2}}+\frac{ca^2}{\sqrt{ca^2}}\right)=\left(a+b+c\right)\)
\(-\frac{1}{2}\left(\sqrt{ab^2}+\sqrt{bc^2}+\sqrt{ca^2}\right)\)
\(\ge\left(a+b+c\right)-\frac{1}{2}\left(\frac{ab+b}{2}+\frac{bc+c}{2}+\frac{ca+a}{2}\right)\) \(=\frac{3\left(a+b+c\right)\left(ab+bc+ac\right)}{2}\)
Tiếp tục áp dụng BĐT AM - GM :
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)=\left(a^2+b^2+c^2\right)\left(ab+bc+ac\right)\)
\(\ge\left(ab+bc+ac\right)^2\)
\(\Rightarrow a+b+c\ge ab+bc+ac\)
Do đó \(VT\ge\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{2}=\frac{a+b+c}{2}\left(đpcm\right)\)
Dấu "= " xảy ra khi \(a=b=c=1\)
Chúc bạn học tốt !!!
áp dụng bất đẳng thức bu nhi a
ta có \(3\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\)
lại có a/b+b/c+c/a \(\ge\)3 (bđt cauchy)
nhân từng vế ta có \(3\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\left(\frac{a}{b}+\frac{b}{a}+\frac{a}{c}\right)\ge3\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\)
suy ra đpcm