K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2016
Dùng Svaxơ là ra nha bạn
21 tháng 8 2015

Lần sau em viết đề cẩn thận hơn nhé, dấu lớn hơn đúng ra phải là lớn hơn hoặc bằng và không có ẩn d.

Bài này sử dụng bất đẳng thức Cauchy-Schwartz thôi (Nếu bạn chưa quen, thì xem lại phát biểu và chứng minh ở đây: http://olm.vn/hoi-dap/question/174274.html ).

Ta có \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a^2+2bc\right)+\left(b^2+2ca\right)+\left(c^2+2ab\right)}=1.\)

Dấu bằng xảy ra khi và chỉ khi \(a=b=c.\)

20 tháng 11 2017

đặt A=...

Áp dúng bất đẳng thức bu nhi a ta có 

\(A^2\le3\left(1+a^2+2bc+1+b^2+2ac+1+c^2+2ab\right)=3\left[\left(a+b+c\right)^2+3\right]\)

=> \(A^2\le36\Rightarrow A\le6\) (ĐPCM)

dấu = xảy ra <=> a=b=c=1

24 tháng 10 2019

tìm trên câu hỏi tương tự bạn sẽ có lời giải của Nguyễn Việt Lâm

14 tháng 7 2017

câu a ) chuyển vế => đpcm

câu b) nhân 2 vế vs 2 rồi chuyển vế => đpcm

câu c) chuyển vế pt đa thức thành nhân tử ( cái này lớp 8 đã pt rồi)=> đpcm

20 tháng 7 2016

Đăt  \(2\sqrt{a^2-ab+b^2}+\sqrt{a^2-2ca+4c^2}+\sqrt{b^2-2bc+4c^2}\ge8c\)  \(\left(\alpha\right)\)

Mình xin đề xuất một biện pháp khá ngắn gọn. Hy vọng bạn sẽ tìm cách khác.

Ta có: 

\(a^2-ab+b^2=\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

nên   \(\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{\left(a+b\right)^2}{4}}=\frac{a+b}{2}\)

\(\Rightarrow\)  \(2\sqrt{a^2-ab+b^2}\ge a+b\)  \(\left(1\right)\)

Mặt khác, ta cũng có:

\(a^2-2ca+4c^2=\frac{3}{4}\left(a-2c\right)^2+\frac{1}{4}\left(a+2c\right)^2\ge\frac{1}{4}\left(a+2c\right)^2\)

nên  \(\sqrt{a^2-2ca+4c^2}\ge\frac{a+2c}{2}\)  \(\left(2\right)\)

Khi đó, ta cũng có thể thiết lập được bất đẳng thức tương tự như trên:

\(\sqrt{b^2-2bc+4c^2}\ge\frac{b+2c}{2}\)  \(\left(3\right)\)

Cộng từng vế  các bđt  \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right)\)  ta được:

\(2\sqrt{a^2-ab+b^2}+\sqrt{a^2-2ca+4c^2}+\sqrt{b^2-2bc+4c^2}\ge a+b+\frac{a+2c}{2}+\frac{b+2c}{2}\)

Hay nói cách khác,  \(VT\left(\alpha\right)\ge4c+\frac{a+b}{2}+\frac{4c}{2}=4c+2c+2c=8x=VP\left(\alpha\right)\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}a=b\\a=2c\\b=2c\end{cases}}\)  \(\Leftrightarrow\)  \(a=b=2c\)

26 tháng 7 2016

thanks