K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2018

lm giúp e vs ạkhocroi

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

22 tháng 2 2018

Áp dụng BĐt cô-si, ta có \(\frac{2\left(a+b\right)^2}{2a+3b}\ge\frac{8ab}{2a+3b}=\frac{8}{\frac{2}{b}+\frac{3}{a}}\)

                                      \(\frac{\left(b+2c\right)^2}{2b+c}\ge\frac{8bc}{2b+c}=\frac{8}{\frac{2}{c}+\frac{1}{b}}\)

                                        \(\frac{\left(2c+a\right)^2}{c+2a}\ge\frac{8ac}{c+2a}\ge\frac{8}{\frac{1}{a}+\frac{2}{c}}\)

Cộng 3 cái vào, ta có 

A\(\ge8\left(\frac{1}{\frac{2}{b}+\frac{3}{a}}+\frac{1}{\frac{1}{b}+\frac{2}{c}}+\frac{1}{\frac{1}{a}+\frac{2}{c}}\right)\ge8\left(\frac{9}{\frac{3}{b}+\frac{4}{c}+\frac{4}{a}}\right)=8.\frac{9}{3}=24\)

Vậy A min = 24 

Neetkun ^^

22 tháng 2 2018

bạn tìm ra dấu= xảy ra khi nào

AH
Akai Haruma
Giáo viên
29 tháng 1 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{\left ( \frac{a}{bc} \right )^2}{\frac{1}{c}}+\frac{\left ( \frac{b}{ca} \right )^2}{\frac{1}{a}}+\frac{\left ( \frac{c}{ab} \right )^2}{\frac{1}{b}}\geq \frac{\left ( \frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)

\(\Leftrightarrow \text{VT}\geq \frac{\left ( \frac{a^2+b^2+c^2}{abc} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)

Theo hệ quả của BĐT AM-GM thì:

\(a^2+b^2+c^2\geq ab+bc+ac\)

\(\Rightarrow \text{VT}\geq \frac{\left ( \frac{ab+bc+ac}{abc} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c\)

28 tháng 1 2018

Áp dụngk BĐt cô-si, ta có 

\(\frac{a^2}{b^2c}+\frac{b^2}{c^2a}+\frac{1}{a}\ge3.\frac{1}{c}\)

Tương tự , rồi cộng vào, ta có 

\(2A+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\Rightarrow A\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(ĐPCM\right)\)

^_^ 

16 tháng 4 2017

Nhức nhối mãi bài này vì nó làm lag hết máy

Giải

Đặt \(x=\dfrac{b+c}{a};y=\dfrac{c+a}{b};z=\dfrac{a+b}{c}\)

Ta phải chứng minh \(Σ\dfrac{\left(x+2\right)^2}{x^2+2}\le8\)

\(\LeftrightarrowΣ\dfrac{2x+1}{x^2+2}\le\dfrac{5}{2}\LeftrightarrowΣ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{1}{2}\)

Lại theo BĐT Cauchy-Schwarz ta có:

\(Σ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{\left(x+y+z-3\right)^2}{x^2+y^2+z^2+6}\)

Ta còn phải chứng minh

\(2\left(x^2+y^2+z^2+2xy+2yz+2xz-6x-6y-6z+9\right)\)\(\ge x^2+y^2+z^2+6\)

\(\Leftrightarrow x^2+y^2+z^2+4\left(xy+yz+xz\right)-12\left(x+y+z\right)+12\ge0\)

Bây giờ có \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\ge12\left(xyz\ge8\right)\)

Còn phải chứng minh \(\left(x+y+z\right)^2+24-12\left(x+y+z\right)+12\ge0\)

\(\Leftrightarrow\left(x+y+z-6\right)^2\ge0\) (luôn đúng)

16 tháng 4 2017

Bởi vì BĐT là thuần nhất, ta có thể chuẩn hóa \(a+b+c=3\). Khi đó

\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\dfrac{a^2+6a+9}{3a^2-6a+9}=\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2+\left(a-1\right)^2}\right)\)

\(\le\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2}\right)=\dfrac{4a+4}{3}\)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}\ge\dfrac{4b+4}{3};\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\ge\dfrac{4c+4}{3}\)

Cộng theo vế 3 BĐT trên ta có:

\(Σ\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}\geΣ\left(4a+4\right)=8\)

15 tháng 8 2018

Do \(a+b+c=1\) nên Bất đẳng thức trên tương đương:
\(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}\le\dfrac{3}{4}\)

\(\Leftrightarrow\left(1-\dfrac{1}{1+a}\right)+\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\le\dfrac{3}{4}\)

\(\Leftrightarrow3-\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\right)\le\dfrac{3}{4}\)

Áp dụng BĐT cauchy-schwarz engel với a;b;c>0 ta có:

\(3-\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\right)\le3-\dfrac{\left(1+1+1\right)^2}{1+a+1+b+1+c}=3-\dfrac{9}{4}=\dfrac{3}{4}\)

15 tháng 8 2018

Ta có:

\(\dfrac{a}{2a+b+c}+\dfrac{b}{a+2b+c}+\dfrac{c}{a+b+2c}=\dfrac{a}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{\left(a+c\right)+\left(b+c\right)}=\dfrac{a}{4}.\dfrac{4}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{4}.\dfrac{4}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{4}.\dfrac{4}{\left(a+c\right)+\left(b+c\right)}=\dfrac{a}{4}.\dfrac{\left(1+1\right)^2}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{4}.\dfrac{\left(1+1\right)^2}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{4}.\dfrac{\left(1+1\right)^2}{\left(a+c\right)+\left(b+c\right)}\)Áp dụng BĐT Cauchy - Schwarz:

\(VT\le\dfrac{a}{4}.\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)+\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)=\dfrac{1}{4}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)=\dfrac{1}{4}.3=\dfrac{3}{4}\)\("="\Leftrightarrow a=b=c=\dfrac{1}{3}\)

16 tháng 5 2018

C/m BĐT : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)

Áp dụng BĐT Sơ-vác-sơ:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}\ge\dfrac{9}{x+y+z}\)

Ta có: \(9\dfrac{ab}{a+3b+2c}=\dfrac{9ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\left(1\right)\)

CM tương tự

\(\dfrac{9bc}{b+3c+2a}\le\dfrac{bc}{a+c}+\dfrac{bc}{a+b}+\dfrac{b}{2}\left(2\right)\)

\(\dfrac{9ca}{c+3a+2b}\le\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\left(3\right)\)

Cộng vế (1), (2), (3) => đpcm