K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2019

Áp dụng BĐT Cô-si:

\(A\le\dfrac{a+b}{2\sqrt{c+ab}}+\dfrac{b+c}{2\sqrt{a+bc}}+\dfrac{c+a}{2\sqrt{b+ac}}\)\(\le\dfrac{a+b}{2\sqrt{2\sqrt{abc}}}+\dfrac{b+c}{2\sqrt{2\sqrt{abc}}}+\dfrac{c+a}{2\sqrt{2\sqrt{abc}}}\)\(=\dfrac{a+b+c}{\sqrt[4]{4abc}}=\dfrac{1}{\sqrt[4]{4abc}}\ge\dfrac{1}{\sqrt{\left(a+b+c\right).\dfrac{2}{3}}}\)(BĐT Cô-si)\(=\dfrac{1}{\sqrt{\dfrac{2}{3}}}=\dfrac{\sqrt{6}}{2}\)

Vậy Amin=\(\dfrac{\sqrt{6}}{2}\Leftrightarrow a=b=c=\dfrac{1}{3}\)

20 tháng 9 2019

\(\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\frac{\left(a^2+ab+ac+bc\right)\left(b^2+bc+ba+ac\right)}{c^2+ca+cb+ab}}=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)}{\left(c+a\right)\left(c+b\right)}}=a+b\left(a,b,c>0;a+b+c=1\right)\)

Bạn làm tương tự nha

\(\Rightarrow P=a+b+c+a+b+c=2\left(a+b+c\right)=2\)

31 tháng 8 2017

Xét \(\sqrt{\dfrac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\dfrac{\left(a\left(a+b+c\right)+bc\right)\left(b\left(a+b+c\right)+ac\right)}{c\left(a+b+c\right)+ab}}\)

\(=\sqrt{\dfrac{\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)}{ac+bc+c^2+ab}}\)

\(=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}}\)\(=\sqrt{\left(a+b\right)^2}=a+b\)

Tương tự cho 2 đẳng thức còn lại rồi cộng theo vế

\(P=a+b+b+c+c+a=2\left(a+b+c\right)=2\)

17 tháng 8 2017

a)Áp dụng BĐT AM-GM ta có

\(\frac{ab\sqrt{ab}}{a+b}\le\frac{ab\sqrt{ab}}{2\sqrt{ab}}=\frac{ab}{2}\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\frac{bc\sqrt{bc}}{b+c}\le\frac{bc}{2};\frac{ac\sqrt{ac}}{a+c}\le\frac{ac}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT=Σ\frac{ab\sqrt{ab}}{a+b}\le\frac{ab+bc+ca}{2}=VP\)

Khi \(a=b=c\)

b)Áp dụng tiếp AM-GM:

\(b\sqrt{a-1}\le\frac{b\left(a-1+1\right)}{2}=\frac{ab}{2}\)

\(a\sqrt{b-1}\le\frac{a\left(b-1+1\right)}{2}=\frac{ab}{2}\)

Cộng theo vế 2 BĐT trên ta có:

\(VT=b\sqrt{a-1}+a\sqrt{b-1}\le ab=VP\)

Khi \(a=b=1\)

15 tháng 11 2017

ta có : \(P=\frac{\sqrt{bc}}{a+2\sqrt{bc}}+\frac{\sqrt{ac}}{b+2\sqrt{ac}}+\frac{\sqrt{ab}}{c+2\sqrt{ab}}\le\frac{\frac{1}{2}\left(b+c\right)}{a+b+c}+\frac{\frac{1}{2}\left(a+c\right)}{a+b+c}+\frac{\frac{1}{2}\left(a+b\right)}{a+b+c}\)

\(\Rightarrow P\le\frac{a+b+c}{a+b+c}=1\)

=> GTLN của P là 1 khi a=b=c

17 tháng 6 2019

Ta có:\(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a\left(a+b\right)+c\left(a+b\right)}}\)

\(=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\) (Áp dụng BĐT AM-GM)

Tương tự với hai BĐT còn lại và cộng theo vế ta thu được đpcm.

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

26 tháng 6 2019

Ta có:\(H=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+c}+\frac{\sqrt{b}-\sqrt{c}}{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+a}+\frac{\sqrt{c}-\sqrt{a}}{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+b}\)

\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{c}+\sqrt{b}\right)}+\frac{\sqrt{b}-\sqrt{c}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{c}-\sqrt{a}}{\left(\sqrt{b}+\sqrt{a}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)

\(=\frac{a-b+b-c+c-a}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)\(=0\)

Vậy \(H=0\)