K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)

\(\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)

Từ (1) và (2) => đpcm

b, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Có: \(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{bk-b}{dk-d}\right)^2=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\left(1\right)\)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\left(2\right)\)

Từ (1) và (2) => đpcm

5 tháng 11 2024

Mọi ng ơi câu này cần trảloi

21 tháng 7 2016

a)Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

21 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\)

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)

Áp dụng dãy tỉ số bằng nhau ta có;

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

=> đpcm

Chúc bạn làm bài tốt

10 tháng 10 2017

\(bài1\)

Cho a/b = c/d,Chứng minh a/(3a + b) = c/(3c + d),Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

10 tháng 10 2017

Bài 1:

Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{3a+b}{3c+d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)

Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\left(\text{Đ}PCM\right)\)

Bài 2:

Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

Xét \(k^2=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)

Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\left(\text{đ}pcm\right)\)

Bài 3:

Ta có:\(\dfrac{2}{x}=\dfrac{3}{y}\Rightarrow\dfrac{y}{3}=\dfrac{x}{2}\)

Đặt \(\dfrac{y}{3}=\dfrac{x}{2}=k\)\(\Rightarrow\)y=3k

x=2k

Lại có xy=96

\(\Rightarrow2k3k=96\)

\(\Rightarrow6k^2=96\)

\(\Rightarrow k=\pm4\)

Với \(k=4\Rightarrow\left(x;y\right)=\left(8;12\right)\)

\(k=-4\Rightarrow\left(x;y\right)=\left(-8;-12\right)\)

Vậy ta tìm được 2 cặp x;y thỏa mãn yêu cầu đề bài là:

(x;y)=(8;12)

(x;y)=(-8;-12)