Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{3a}{3b}=\dfrac{2c}{2d}=\dfrac{3a-2c}{3b-2d}\)
a/ \(\dfrac{a.c}{b.d}=\dfrac{\left(a+c\right).\left(a-c\right)}{\left(b+d\right).\left(b-d\right)}=\dfrac{a^2-c^2}{b^2-d^2}\)
b/ \(\dfrac{a^2}{b^2}=\dfrac{a}{b}.\dfrac{3a-2c}{3b-2d}=\dfrac{3a^2-2ac}{3b^2-2bd}\)
Làm bài này một hồi chắc bay não:v
Bài 1:
a) Áp dụng BĐT AM-GM:
\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b = c.
b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.
Bài 2:
a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v
b) Theo BĐT Bunhicopxki:
\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)
Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)
Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:
\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)
a,b,c khác nhau đôi một nghĩa là từng cặp số khác nhau ,là:
+a khác b
+b khác c
+c khác a
\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0\)
Suy ra: \(ab==-\left(bc+ac\right)=-bc-ac\)
\(bc=-\left(ab+ac\right)=-ab-ac\)
\(ac=-\left(ab+bc\right)=-ab-bc\)
Nên \(a^2+2ab=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
Tương tự,ta cũng có: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\)
\(c^2+2ab=\left(c-a\right)\left(c-b\right)\)
Vậy \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)
Do \(a\ge1,d\le50\left(and\right)c>b\left(c,b\in N\right)nên\left(c\ge b+1\right)\)thành thử
\(S=\frac{a}{b}+\frac{c}{d}\ge\frac{1}{b}+\frac{b+1}{50}=\frac{b^2+b+50}{50b}\)
zậy BĐT của đề ra đc CM
dấu = xảy ra khi \(\hept{\begin{cases}a=1\\d=50\\c=b+1\end{cases}.}\)
ĐỂ tìm minS ta đặt
\(\frac{b^2+b+50}{50b}=\frac{b}{50}+\frac{1}{b}+\frac{1}{50}\)zà xét hàm số có biến số liên tục x
\(f\left(x\right)=\frac{x}{50}+\frac{1}{x}+\frac{1}{50}\left(2\le x\le48\right)\)
\(f'\left(x\right)=\frac{1}{50}-\frac{1}{x^2}=\frac{x^2-50}{50x^2};f'\left(x\right)=0\hept{\begin{cases}x^2=50\\2\le x\le48\end{cases}\Leftrightarrow x=5\sqrt{2}}\)
Ta có bảng biến thiên
x | 2 \(5\sqrt{2}\) 48 |
f'(x) | - 0 + |
f(x) | \(\rightarrow\)minf(x ) )\(\rightarrow\) |
chuyển zế biểu thức
\(f\left(b\right)=\frac{b^2+b+50}{50b}\left(2\le b\le48,b\in N\right)\)
từ BBT suy ra b biến thiên từ 2 đến 7 , f(b) giảm rồi chuyển sang tăng khi b biến thiên từ 8 đến 48 . suy ra minf(b) = min[f(7) ;f(8)]
ta có
\(\hept{\begin{cases}f\left(7\right)=\frac{49+57}{350}=\frac{53}{175}\\f\left(8\right)=\frac{64+58}{400}=\frac{61}{200}>\frac{53}{175}\end{cases}}\)
zậy min S = 53/175 khi a=1 , b=7 , c=8 , d=50\
nguồn đại học học 2002 dự bị 5
Câu này lớp 7 tớ có làm. Cũng như cái mà gọi là áp dụng t/c dãy tỉ số bằng nhau và tỉ lệ thức. mình tính ra dc a, b. c rồi.