Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có
A= -a+(b-d)-(c+a)-(b-a)
= -a+b-d-c-a-b+a
=(-a-a+a)+(b-b)-c-d
=-a-c-d
b, Ta có
B=d-(a+c)+(b+d)-b+(b-c)
=d-a-c+b+d-b+b-c
=(d+d)-a+(-c-c)+(b-b+b)
=2d-a-2c+b
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
2.
a) \(\left|a\right|+a\)
+ Nếu \(a>0\) thì \(\left|a\right|=a.\)
\(\Rightarrow\left|a\right|+a=a+a=2a.\)
+ Nếu \(a< 0\) thì \(\left|a\right|=-\left(a\right).\)
\(\Rightarrow\left|a\right|+a=\left(-a\right)+a=0.\)
b) \(\left|a\right|-a\)
+ Nếu \(a>0\) thì \(\left|a\right|=a.\)
\(\Rightarrow\left|a\right|-a=a-a=0.\)
+ Nếu \(a< 0\) thì \(\left|a\right|=-\left(a\right).\)
\(\Rightarrow\left|a\right|-a=\left(-a\right)-a=-2a.\)
c) \(\left|a\right|.a\)
+ Nếu \(a>0\) thì \(\left|a\right|=a.\)
\(\Rightarrow\left|a\right|.a=a.a=a^2.\)
+ Nếu \(a< 0\) thì \(\left|a\right|=-\left(a\right).\)
\(\Rightarrow\left|a\right|.a=\left(-a\right).a=-a^2.\)
d) \(\left|a\right|:a\)
+ Nếu \(a>0\) thì \(\left|a\right|=a.\)
\(\Rightarrow\left|a\right|:a=a:a=1.\)
+ Nếu \(a< 0\) thì \(\left|a\right|=-\left(a\right).\)
\(\Rightarrow\left|a\right|:a=\left(-a\right):a=-1.\)
Chúc bạn học tốt!
a: \(B=\left|2-x\right|+1.5>=1.5\)
Dấu '=' xảy ra khi x=2
b: \(B=-5\left|1-4x\right|-1\le-1\)
Dấu '=' xảy ra khi x=1/4
g: \(C=x^2+\left|y-2\right|-5>=-5\)
Dấu '=' xảy ra khi x=0 và y=2
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
\(A=\left|x+\frac{1}{2}\right|-1\)
ta có \(\left|x+\frac{1}{2}\right|\ge0\forall x\in R\)
\(\Rightarrow\left|x+\frac{1}{2}\right|-1\ge-1\forall x\in R\)
\(\Rightarrow A\ge-1\)
\(A=-1\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy GTNN của A=-1 tại x=-1/2