K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

Bđ: \(\frac{12b}{bcd+4bc+12b+24}=\frac{12ab}{abcd+4abc+12ab+24a}=\frac{12ab}{24+4abc+12ab+24a}=\frac{3ab}{abc+3ab+6a+6}\)

Tương tự: \(\frac{4c}{cda+cd+4c+12}=\frac{4abc}{a^2bcd+abcd+4abc+12ab}=\frac{4abc}{24a+24+4abc+12ab}=\frac{abc}{abc+3ab+6a+6}\)

Rồi bạn cộng vế với vế là ra kết quả bằng 1

Và: \(\frac{2d}{dab+2da+2d+8}=\frac{2abcd}{a^2b^2cd+2a^2bcd+2abcd+8abc}=\frac{48}{24ab+48a+48+8abc}=\frac{6}{abc+3ab+6a+6}\)

24 tháng 7 2018

Cái chỗ " Rồi bạn cộng vế với vế là ra kết quả bằng 1" bạn cho xuống cuối dòng nhé

9 tháng 2 2021

ĐKXĐ : \(\hept{\begin{cases}ab-2\ne0\\ab+2\ne0\\a^4b^4\ne0\end{cases}}\Rightarrow ab\ne\pm2;a\ne0;b\ne0\)

\(P=\left(\frac{1}{ab-2}+\frac{1}{ab+2}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\left(\frac{2ab}{a^2b^2-4}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\left(\frac{4a^3b^3}{a^4b^4-16}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\frac{8a^5b^5}{a^8b^8-16^2}.\frac{a^4b^4+16}{a^4b^4}=\frac{8a^5b^5\left(a^4b^4+16\right)}{\left(a^4b^4-16\right)\left(a^4b^4+16\right).a^4b^4}\)

\(=\frac{8ab}{a^4b^4-16}\)

b) Khi \(\frac{a^2+4}{b^2+9}=\frac{a^2}{9}\)

=> (a2 + 4).9 = a2(b2 + 9)

=> 9a2 + 36 = a2b2 + 9a2

=> a2b2 = 36

=> (ab)2 = 36

=> \(\orbr{\begin{cases}ab=6\left(tm\right)\\ab=-6\left(tm\right)\end{cases}}\)

Khi ab = 6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.6}{6^4-16}=\frac{48}{1280}=\frac{3}{80}\)

Khi ab = -6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.\left(-6\right)}{\left(-6\right)^4-16}=-\frac{3}{80}\)

NV
18 tháng 3 2019

Dùng biến đổi tương đương:

a/ \(a^2+b^2+c^2+d^2+16\ge4a+4b+4c+4d\)

\(\Leftrightarrow a^2-4a+4+b^2-4b+4+c^2-4c+4+d^2-4d+4\ge0\)

\(\Leftrightarrow\left(a-2\right)^2+\left(b-2\right)^2+\left(c-2\right)^2+\left(d-2\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

Dấu "=" xảy ra khi \(a=b=c=d=2\)

b/ \(a^2+b^2\ge a+b-\frac{1}{2}\)

\(\Leftrightarrow a^2-a+\frac{1}{4}+b^2-b+\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2\ge0\) (luôn đúng)

Dấu "=" khi \(a=b=\frac{1}{2}\)

24 tháng 3 2019

Do a ; b ; c > 0 ( GT )

Áp dụng BĐT phụ \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\) , ta có :

\(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

\(\Leftrightarrow12\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

\(\Leftrightarrow3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le1\)

Lại có : \(\frac{1}{4a+b+c}=\frac{1}{a+a+a+a+b+c}\le\frac{1}{36}\left(\frac{4}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(1\right)\)

( áp dụng BĐT phụ \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+\frac{1}{a4}+\frac{1}{a5}+\frac{1}{a6}\ge\frac{36}{a1+a2+a3+a4+a5+a6}\) )

CMTT , ta có : \(\frac{1}{4b+a+c}\le\frac{1}{36}\left(\frac{4}{b}+\frac{1}{a}+\frac{1}{c}\right);\frac{1}{4c+a+b}\le\frac{1}{36}\left(\frac{4}{c}+\frac{1}{a}+\frac{1}{b}\right)\left(2\right)\)

Từ ( 1 ) ; ( 2 ) \(\Rightarrow\frac{1}{4a+b+c}+\frac{1}{4b+a+c}+\frac{1}{4c+a+b}\le\frac{1}{36}\left(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)=\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{6}.1=\frac{1}{6}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=3\)

18 tháng 3 2019

Áp dụng bđt Cauchy-Schwarz:

\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\ge\frac{\left(1+1+1\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\frac{9}{4a+4b+4c}\)Dấu "=" xảy ra khi a=b=c

NV
22 tháng 5 2020

\(\Leftrightarrow\frac{4a}{4a+3bc}+\frac{4b}{4b+3ac}+\frac{4c}{4c+3ab}\le2\)

\(\Leftrightarrow\frac{bc}{4a+3bc}+\frac{ac}{4b+3ac}+\frac{ab}{4c+3ab}\ge\frac{1}{3}\)

Thật vậy, ta có:

\(VT=\frac{b^2c^2}{4abc+3b^2c^2}+\frac{a^2c^2}{4abc+3a^2c^2}+\frac{a^2b^2}{4abc+3a^2b^2}\)

\(VT\ge\frac{\left(ab+bc+ca\right)^2}{3\left(a^2b^2+b^2c^2+c^2a^2\right)+12abc}=\frac{a^2b^2+b^2c^2+c^2a^2+2\left(a+b+c\right)abc}{3\left(a^2b^2+b^2c^2+c^2a^2+4abc\right)}\)

\(VT\ge\frac{a^2b^2+b^2c^2+c^2a^2+4abc}{3\left(a^2b^2+b^2c^2+c^2a^2+4abc\right)}=\frac{1}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)

3 tháng 4 2020

Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:

\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)

\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)

\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)

Cộng (1),(2) và (3) có:

\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)

\(\Rightarrow2VP\ge2VT\)

\(\RightarrowĐPCM\)