K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

Ta có a, b, c, d thuộc  N*
\(\Leftrightarrow\)\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{b+c+d}>\frac{c}{a+b+c+d} \)

\(\frac{d}{a+c+d}>\frac{d}{a+b+c+d}\)

Cộng vế theo vế, ta có: M>\(\frac{a+b+c+d}{a+b+c+d}\)=1
Vì a, b, c, d thuộcc N* \(\Rightarrow\) \(\frac{a}{a+b+c}< 1 \)\(\Rightarrow\)  \(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự, ta có: \(\frac{b}{a+b+d}< \frac{b+c}{a+b+c+d},\frac{c}{b+c+d}< \frac{c+a}{a+b+c+d},\frac{d}{a+c+d}< \frac{d+b}{a+b+c+d}\)

9 tháng 8 2016

Tiếp nha bạn:
Công vế theo vế ta có:
M<\(\frac{a+d+b+c+c+a+d+b}{a+b+c+d} \Rightarrow M< \frac{2a+2b+2c+2d}{a+b+c+d}\)\(\Rightarrow M< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

\(\Rightarrow\) M<2               (2)
 Từ (1) và (2) \(\Rightarrow\)  1<M<2
                      \(\Rightarrow\)   M không có giá trị là số nguyên

7 tháng 2 2020

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

12 tháng 3 2022

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

5 tháng 2 2020

Ta có: \(a,b,c,d\in N^{\times}\)nên:

\(\Rightarrow a+b+c< a+b+c+d\)

\(\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

Tương tự ta có: \(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)

Và: \(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)

Và: \(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)

\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)

Lại có: \(a,b,c,d\in N^{\times}\) nên:

\(\Rightarrow a+b+c>a+b\)

\(\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)

Tương tự ta có: \(\frac{b}{a+b+d}< \frac{b}{a+b}\)

Và: \(\frac{c}{a+c+d}< \frac{c}{c+d}\)

Và: \(\frac{d}{b+c+d}< \frac{d}{c+d}\)

\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)

Vậy \(1< M< 2\) nên \(M\) không phải số tự nhiên.

28 tháng 11 2015

ta có:a,b,c,d thuộc N nên

\(\frac{a}{a+b+c+d}<\frac{a}{a+b+c}<\frac{a}{a+b}\)


\(\frac{b}{a+b+c+d}<\frac{b}{a+b+d}<\frac{b}{a+b}\)

\(\frac{c}{a+b+c+d}<\frac{c}{b+c+d}<\frac{c}{c+d}\)

\(\frac{d}{a+b+c+d}<\frac{d}{a+c+d}<\frac{d}{a+d}\)

do đó :\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}

=>1<M<2

vậy M có giá trị ko là 1 số nguyên

28 tháng 11 2015

áp dụng tính chất của dãy tỉ số bằng nhau,(làm phép cộng)  rút gọn a+b+c+d ta được 1/3 suy ra ĐPCM

7 tháng 2 2020

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath