Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
Em thử thôi nha, dốt hình lắm:( TRình bày khá lủng củng, chị thông cảm ạ, có khi em sắp xếp thứ tự các đỉnh tương ứng của hai tam giác bằng nhau sai đấy)
a) Dễ chứng minh tam giác AED = tam giác AEB (g.c.g)
Suy ra AD = AB suy ra tam giác ADB cân tại A. Mặt khác dễ thấy A, E, O thẳng hàng mà AE là phân giác góc A nên AO cũng là phân giác góc A. Mặt khác tam giác ADB cân tại A có đường phân giác AO xuất phát từ đỉnh nên đồng thời cũng là đường trung trực do đó OA vuông góc với AE và OD = OB (1). Tức là AE vuông góc với DB.
b) Do tam giác AED = tam giác AEB nên ^ADE = ^ABE
Mặt khác ^BDE = ^ABD (so le trong, do AB// DE)
Từ (2) và (3) suy ra ^DBE = ^ADB, mà hai góc này ở vị trí so le trong nên AD//BE
Từ đây ta có AD // BE và AB // DE nên theo tính chất đoạn chắn suy ra AD = BE
c) Do AD // BE và AB // DE nên theo tính chất đoạn chắn suy ra DE = AB(4). Ta cần chứng minh AB = EC.(5)
Điều này là hiển nhiên vì theo đề bài AE // BC và AB// EC (do giả thiết AB // DC và E thuộc DC) nên nó đúng theo tính chất đoạn chắn.
Do đó (5) đúng suy ra DE = EC (cùng bằng AB) hay E là trung điểm CD.
Còn lại em bí