K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
7 tháng 2 2018
Ta có \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)
> \(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=\frac{a+b+c+d}{a+b+c+d}=1\left(1\right)\)
Lại có \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)
< \(\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\left(2\right)\)
Từ (1) và (2) => 1<M<2
=> M không là số tự nhiên
VT
0
S
0
VT
4
A
0
A
0
Theo nguyên lí Dirichlet, chắc chắn phải có 2 số cùng dư khi chia cho 3
=> tích chia hết cho 3
Nếu có 2 số cùng số dư khi chia cho 4 thì tích chia hết cho 4
Nếu ko có 2 số nào cùng dư thì các số dư là 0,1,2,3 => có 2 số lẻ và 2 số chẵn
Hiệu của 2 số lẻ nhân với hiệu của 2 số chẵn chia hết cho 4 ( vì mỗi hiệu chia hết cho 2) => Tích chia hết cho 4 trong mọi a,b,c,d
Vì (3;4)=1 nên tích chia hết cho 3.4=12
thanks