K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

      Áp dụng bất đẳng thức |m|+ |n|≥ |m + n| .Dấu = xảy ra khi m,n cùng dấu

     A ≥ |x − a + x − b|+ |x − c + x − d| = |2x − a − b|+ |c + d − 2x| ≥ |2x − a − b − 2x + c + d| =|c + d − a − b|

     Dấu = xảy ra khi x − a và x − b cùng dấu hay(x ≤ a hoặc x ≥ b)

                         x − c và x − d cùng dấu hay(x ≤ c hoặc x ≥ d)

                       2x − a − b và c + d − 2x cùng dấu hay (x + b ≤ 2x ≤ c + d)

        Vậy Min A =c+d-a-b khi b ≤ x ≤ c 

~ Học tốt ~ K cho mk nha. Thank you.

9 tháng 5 2019

Bạn "  I love Family " ơi, đề bài ng' ta chỉ cho a,b,c,d là các số dương thôi mà sao cách giải giống với kiểu đềa<b<c<d trên mạng vậy?
 

23 tháng 9 2020

a) B = | 2x - 3 | - 7

| 2x - 3 | ≥ 0 ∀ x => | 2x - 3 | - 7 ≥ -7

Đẳng thức xảy ra <=> 2x - 3 = 0 => x = 3/2

=> MinB = -7 <=> x = 3/2

C = | x - 1 | + | x - 3 |

= | x - 1 | + | -( x - 3 ) | 

= | x - 1 | + | 3 - x | ≥ | x - 1 + 3 - x | = | 2 | = 2

Đẳng thức xảy ra khi ab ≥ 0

=> ( x - 1 )( 3 - x ) ≥ 0

=> 1 ≤ x ≤ 3

=> MinC = 2 <=> 1 ≤ x ≤ 3

b) M = 5 - | x - 1 |

- | x - 1 | ≤ 0 ∀ x => 5 - | x - 1 | ≤ 5

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MaxM = 5 <=> x = 1

N = 7 - | 2x - 1 |

- | 2x - 1 | ≤ 0 ∀ x => 7 - | 2x - 1 | ≤ 7 

Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2

=> MaxN = 7 <=> x = 1/2

20 tháng 7 2018

\(A=\left|x-1\right|+2018\)

ta có :

\(\left|x-1\right|\ge0\)

\(\Rightarrow\left|x-1\right|+2018\ge0+2018\)

\(\Rightarrow\left|x-1\right|+2018\ge2018\)

dấu "=" xảy ra khi :

\(\left|x-1\right|=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

vậy MinA = 2018 khi x = 1

20 tháng 7 2018

Bạn nào thông minh giải cả 3 câu hộ mình luôn nha. mk đang cần gấp các bạn ơi

1 tháng 10 2020

a) \(A=0,5-\left|x-3,5\right|\le0,5\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|x-3,5\right|=0\Rightarrow x=3,5\)

Vậy Max(A) = 0,5 khi x = 3,5

b) \(C=1,7+\left|3,4-x\right|\ge1,7\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|3,4-x\right|=0\Rightarrow x=3,4\)

Vậy Min(C) = 1,7 khi x = 3,4

21 tháng 8 2020

làm nốt câu này rồi đi ngủ 

\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)

Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN 

Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)

Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được : 

\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)

Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)

Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)

Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)