K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

viết thế nay bố ai hiểu được

27 tháng 7 2019

bạn kì quá ko giúp thì thôi còn phàn nàn. 

27 tháng 7 2019

\(\frac{a^4}{a^3+2b^3}=a-\frac{2ab^3}{a^3+b^3+b^3}\ge a-\frac{2ab^3}{3ab^2}=a-\frac{2}{3}b\)

tương tự cộng lại ta có đpcm 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=d\)

8 tháng 10 2016

Gợi ý cho bạn :

Đặt \(x=a+b\)\(y=b+c\) , \(z=c+d\) , \(t=d+e\)\(u=e+a\),

Ta có \(a=\frac{x+u-t+z-y}{2}\)\(b=\frac{x+y+t-z-u}{2}\)\(c=\frac{y+z+u-t-x}{2}\)\(d=\frac{z+t+x-y-u}{2}\)\(e=\frac{t+u+y-x-z}{2}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+e}+\frac{d}{e+a}+\frac{e}{a+b}\)

\(=\frac{x+u+z-t-y}{2y}+\frac{x+y+t-z-u}{2z}+\frac{y+z+u-t-x}{2t}+\frac{z+t+x-y-u}{2u}+\frac{t+u+y-x-z}{2x}\)

Đến đây nhóm lại rồi áp dụng BĐT Cauchy.

5 tháng 9 2016

đề sai upp làm gì ?

5 tháng 9 2016

đề sai á? tg ns lăng nhăng lên đây thử xem có ai giải k thôi

10 tháng 1 2021

Ta có: \(\frac{a^3+b^3}{\sqrt{a^2-ab+b^2}}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\sqrt{a^2-ab+b^2}}=\left(a+b\right)\sqrt{a^2-ab+b^2}\)

\(=\sqrt{a+b}\sqrt{\left(a+b\right)\left(a^2-ab+b^2\right)}=\sqrt{a+b}\sqrt{a^3+b^3}\)

\(=\sqrt{\left(a+b\right)\left(a^3+b^3\right)}=\sqrt{\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{a^3}^{^2}+\sqrt{b^3}^{^2}\right)}\)

Áp dụng BĐT Bunhi... ta có:

\(\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{a^3}^{^2}+\sqrt{b^3}^{^2}\right)^2\ge\left(\sqrt{a}\sqrt{a^3}+\sqrt{b}\sqrt{b^3}\right)^2\)

\(\Rightarrow\sqrt{\left(\sqrt{a}^2+\sqrt{b}^2\right)+\left(\sqrt{a^3}^{^2}+\sqrt{b^3}^{^2}\right)}\)\(\ge\sqrt{a}\sqrt{a^3}+\sqrt{b}\sqrt{b^3}=\sqrt{a^4}+\sqrt{b^4}=a^2+b^2\)

\(\Rightarrow\frac{a^3+b^3}{\sqrt{a^2-ab+b^2}}\ge a^2+b^2\) (1)

Tương tự ta có: \(\frac{b^3+c^3}{\sqrt{b^2-bc+c^2}}\ge b^2+c^2\) (2)

\(\frac{c^3+d^3}{\sqrt{c^2-cd+d^2}}\ge c^2+d^2\)(3)

\(\frac{d^3+a^3}{\sqrt{d^2-da+a^2}}\ge d^2+a^2\)(4)

Cộng vế với vế của 1,2,3,4 ta được:

\(\frac{a^3+b^3}{\sqrt{a^2-ab+b^2}}+\frac{b^3+c^3}{\sqrt{b^2-bc+c^2}}+\frac{c^3+d^3}{\sqrt{c^2-cd+d^2}}+\frac{d^3+a^3}{\sqrt{d^2-da+a^2}}\)\(\ge2\left(a^2+b^2+c^2+d^2\right)\left(\text{đ}pcm\right)\)

10 tháng 1 2021

Hoặc \(\left(a+b\right)\sqrt{a^2-ab+b^2}\ge a^2+b^2\Leftrightarrow ab\left(a-b\right)^2\ge0\)(bình phương lên)

6 tháng 10 2017

bài 1b

+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)

mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số

+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)

Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)

\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)

là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2

(nhớ k nhé)

6 tháng 10 2017

Bài 2a)

Nhân 2 vế với 2 ta có

\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Dẫu = xảy ra khi \(a=b\)

9 tháng 12 2015

\(a^3+a^3+\frac{1}{64}\ge\frac{3}{4}a^2 \)
Tiếp tục đánh giá