K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì \(0\le a,b,c,d\le1\Rightarrow abc+1\ge abcd+1\)

\(\Rightarrow VT\le\frac{a+b+c+c}{abcd+1}\)

Do \(\hept{\begin{cases}\left(1-a\right)\left(1-b\right)\ge0\\\left(1-c\right)\left(1-d\right)\ge0\\\left(1-ab\right)\left(1-cd\right)\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a+b\le1+ab\\c+d\le1+cd\\ab+cd\le1+abcd\end{cases}}\)

\(\Rightarrow a+b+c+d\le2+ab+cd\le2+1+abcd=3+abcd\)

Vậy \(VT\le\frac{3+abcd}{1+abcd}\le\frac{3\left(1+abcd\right)}{1+abcd}=3\)

Dấu "=" xảy ra khi a=0,b=c=d=1

2 tháng 2 2017

Ta có: \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\le1-\frac{d}{d+1}=\frac{1}{d+1}\\\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1-\frac{a}{a+1}=\frac{1}{a+1}\\\frac{a}{a+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1-\frac{b}{b+1}=\frac{1}{b+1}\\\frac{a}{a+1}+\frac{b}{b+1}+\frac{d}{d+1}\le1-\frac{c}{c+1}=\frac{1}{c+1}\end{matrix}\right.\)

Áp dụng BĐT Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\frac{1}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\\\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\\\frac{1}{b+1}\ge\frac{a}{a+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}}\\\frac{1}{c+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\end{matrix}\right.\)

Nhân từng vế:

\(\Rightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\frac{a^3b^3c^3d^3}{\left(a+1\right)^3\left(b+1\right)^3\left(c+1\right)^3}}\)

\(\Rightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)

\(\Rightarrow1\ge81abcd\)

Vậy \(abcd\le\frac{1}{81}\left(đpcm\right)\)

p/s : lí do tớ tự trả lời câu hỏi của mình là để coi câu trả lời của mình có đúng hay ko thôi nha , mong các bạn đứng có hiểu lầm , nếu bạn nào có cách nào nhanh và gọn hơn thì phiền các bạn chỉ dùm luôn nha.

AH
Akai Haruma
Giáo viên
2 tháng 2 2017

Mình nghĩ cách làm của bạn là ok rồi đấy

Bản chất là ngắn, có điều bạn trình bày quá cẩn thận nên khiến nó dài thôi. Khuyên chân thành là nếu đi thi sau khi áp dụng quy tắc "tương tự" để đỡ tốn thời gian hơn, cũng k bị mất điểm.

20 tháng 11 2017

Đặt A là vế trái của BĐT cần chứng minh và ký hiệu m là số bé nhất trong bốn số có ở mẫu của A.Như vậy \(m\ge abcd+1\)

\(A\le\frac{a}{m}+\frac{b}{m}+\frac{c}{m}+\frac{d}{m}=\frac{a+b+c+d}{m}\le\frac{a+b+c+d}{1+abcd}\)

Vì \(a,b,c,d\in\left[0,1\right]\)nên

\(a+b\le1+ab;c+d\le1+cd;ab+cd\le1+abcd\)

\(\Rightarrow a+b+c+d\le3+abcd\)

vì thế \(A\le\frac{3+abcd}{1+abcd}\le3\)

Vậy Max là 3

20 tháng 11 2017

có ai có cách giải dễ hiểu hơn ko? bn trên lm như vậy cx đc r nhưng trình bày chưa đc!

4 tháng 6 2020

Vì abc = 1 nên ta có thể đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\). Khi đó: 

\(VT=\Sigma_{cyc}\frac{1}{\sqrt{\frac{x}{z}+\frac{x}{y}+2}}=\Sigma_{cyc}\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}\)

\(\Rightarrow VT^2\le\left(1+1+1\right)\left(\Sigma_{cyc}\frac{yz}{xy+xz+2yz}\right)\left(\text{ }\right)\)(Theo BĐT Cauchy-Schwarz)

\(\le\frac{3}{4}\left[\Sigma_{cyc}yz\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)\right]=\frac{3}{4}\left(\Sigma_{cyc}\frac{xy+yz}{xy+yz}\right)=\frac{9}{4}\)

\(\Rightarrow VT\le\frac{3}{2}\)

Đẳng thức xảy ra khi x = y = z hay a = b = c = 1

15 tháng 11 2019

Tham khảo

Câu hỏi của Châu Trần - Toán lớp 9 - Học toán với OnlineMath

15 tháng 11 2019

à xl gửi lộn

17 tháng 1 2020

bạn có đang on không chat vs mình đi

24 tháng 3 2020

Trước khi đọc lời giải hãy thăm nhà em trước nhé ! See method from solution! Cảm ơn mn!

Ok, giờ chú ý:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab.ca+abc+ab}\)

\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}=1\) với abc = 1.

Như vậy: \(VT=\sqrt{\left(\Sigma\frac{1}{\sqrt{ab+a+2}}\right)^2}\le\sqrt{3\left(\Sigma\frac{1}{\frac{\left(ab+a+1\right)}{3}+\frac{\left(ab+a+1\right)}{3}+\frac{\left(ab+a+1\right)}{3}+1}\right)}\)

\(\le\sqrt{\frac{3}{16}\left[\Sigma\left(\frac{9}{ab+a+1}+1\right)\right]}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

6 tháng 1 2018

Theo BĐT AM-GM: \(a^4+b^4\ge2a^2b^2\)

Tương tự suy ra \(a^4+b^4+c^4\)\(\ge a^2b^2+b^2c^2+c^2a^2\)

Tiếp tục dùng AM-GM: \(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2ab^2c\)

Tương tự suy ra \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4+abcd\ge abc\left(a+b+c\right)+abcd\)\(=abc\left(a+b+c+d\right)\)

\(\Rightarrow\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)

Tương tự cho 3 BĐT còn lại rồi cộng theo vế:

\(VT\le\frac{a+b+c+d}{abcd\left(a+b+c+d\right)}=\frac{1}{abcd}=VP\)

5 tháng 1 2018

sorry nha!Mik ko bít làm.???

12 tháng 6 2020

Cách 1:

\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+1\right)+\left(a+1\right)}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\)

Tương tự:\(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right);\frac{1}{ac+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\)

Tương tự cộng vế theo vế có đpcm

Cách 2:

Áp dụng Cauchy Schwarz ta dễ có:

\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+a+1\right)+1}\le\frac{1}{16}\left(\frac{3^2}{ab+a+1}+\frac{1}{1}\right)=\frac{1}{16}\left(\frac{9}{ab+a+1}+1\right)\)

Tương tự:

\(\frac{1}{bc+b+2}\le\frac{1}{16}\left(\frac{9}{bc+b+1}+1\right);\frac{1}{ca+c+2}\le\frac{1}{16}\left(\frac{9}{ca+c+1}+1\right)\)

Cộng lại:

\(LHS\le\frac{9}{16}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)+\frac{3}{16}\)

Mà \(abc=1\) nên theo bổ đề quen thuộc ta có được đẳng thức sau luôn đúng:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=1\)

Khi đó ta có được đpcm

12 tháng 6 2020

Vừa nghĩ ra cách này khá là oke gửi đến các bạn :))

Nháp:

Ta đặt \(\left(a;b;c\right)\rightarrow\left(\frac{u}{v};\frac{v}{w};\frac{w}{u}\right)\) thì ta có được:

\(\frac{1}{ab+a+2}=\frac{1}{\frac{u}{v}\cdot\frac{v}{w}+\frac{u}{v}+2}=\frac{vw}{uv+uw+2vw}\) đến đây ta chưa được gì  cả nên nghĩ đến hướng đi khác

Để ý rằng ta làm tử và mẫu khử nhau rồi tạo ra phân thức mới rồi nhân ngược lên ta được tử số có 2 thừa số nhân lại với nhau

Ta cần tạo ra ít mẫu nhất có thể để bớt sự phức tạp. Mà ta lại có:

\(\frac{1}{ab+a+2}=\frac{1}{\frac{u}{v}\cdot\frac{w}{u}+\frac{u}{v}+2}=\frac{v}{w+u+2v}\)

Đến đây rõ ràng đã bớt sự phức tạp. Khi đó ta có lời giải như sau:

Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{u}{v};\frac{w}{u};\frac{v}{w}\right)\)

Ta có được 

\(LHS=\frac{v}{w+u+2v}+\frac{w}{u+v+2w}+\frac{u}{v+w+2u}\)

\(=3-\left(\frac{u+v+w}{w+u+2v}+\frac{u+v+w}{u+v+2w}+\frac{u+v+w}{v+w+2u}\right)\)

\(=3-\left(u+v+w\right)\left(\frac{1}{u+w+2v}+\frac{1}{u+v+2w}+\frac{1}{v+w+2u}\right)\)

\(\le3-\left(u+v+w\right)\cdot\frac{9}{4\left(u+v+w\right)}=\frac{3}{4}\)

Đẳng thức xảy ra tại a=b=c=1