Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
b^2=ac =>a/b=b/c (1)
c^2=bd =>b/c=c/d (2)
(1)(2)=>a/b=b/c=c/d
=>a^3/b^3=b^3/c^3=c^3/d^3=abc/bcd
=>(a^3+b^3+c^30)/(b^3+c^3+d^3)=a/d
Vay.......
Nhớ tick mk nha
ta có:
b^2=ac =>a/b=b/c (1)
c^2=bd =>b/c=c/d (2)
(1)(2)=>a/b=b/c=c/d
=>a^3/b^3=b^3/c^3=c^3/d^3=abc/bcd
=>(a^3+b^3+c^3)/(b^3+c^3+d^3)=a/d
Vay dpcm
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c},c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{b}\)
\(\Rightarrow\frac{b^3+c^3+d^3}{a^3+b^3+c^3}=\frac{d}{a}\left(đpcm\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
Ta có: \(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^3=\left(\frac{b}{d}\right)^3=\frac{b^3}{d^3}\left(1\right)\)
\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\frac{b^3k^3+b^3}{d^3k^3+d^3}=\frac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\frac{b^3}{d^3}\left(2\right)\)
Từ (1!) và (2) => \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
Ta có \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
<=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
<=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(đpcm)
trả lời :
Ta có \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
<=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
<=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(đpcm)
^HT^
a .
\(b^2\)= ac => \(\frac{a}{b}\)=\(\frac{b}{c}\)
c\(^2\)= bd => \(\frac{b}{c}=\frac{c}{d}\)
=>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{a^3}{b^3}=\frac{c^3}{d^3}\)=\(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)( theo \(\frac{t}{c}\)của dãy tỉ số = )
Mà \(\frac{a^3}{b^3}\)= \(\frac{a}{b}\)x \(\frac{a}{b}\).x \(\frac{a}{b}\) = \(\frac{a}{b}\) x\(\frac{b}{c}\)x\(\frac{c}{d}\)= \(\frac{a}{d}\)
Nên \(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)=\(\frac{a}{d}\)
x-y=2<=>x=y+2
thay vào Q được:
Q=(y+2)^2+y^2-(y+2)y
=y^2+2y+4
=(y+1)^2+3
=>A>=3
dấu bằng xảy ra <=>y= -1 và x=1
vậy min Q=3
b2 = ac => \(\frac{a}{b}=\frac{b}{c}\)
c2 = bd => \(\frac{b}{c}=\frac{c}{d}\)
=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}=\frac{a}{d}\)
Theo tính chất dãy tỉ số bằng nhau
=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
=> Đpcm
đưa các đẳng thức đã cho về phân số, áp dụng t/c cuẩ dãy tỉ số bằng nhau rồi lập phương lên
Bài làm :
Ta có : \(b^2=ca\Rightarrow\frac{a}{b}=\frac{b}{c}\), \(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) ( Tính chất dãy tỉ số bằng nhau ) (1)
Lại có : \(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
( Do \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) ) (2)
Từ (1) và (2) \(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\) ( đpcm )
Chúc bạn học tốt !!