Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^3+n+2\)
\(=n\left(n^2+1\right)+2\)
TH1: n=2k
\(A=2k\left(4k^2+1\right)+2⋮2\)
TH2: n=2k+1
\(A=\left(2k+1\right)\left[\left(2k+1\right)^2+1\right]+2\)
\(=\left(2k+1\right)\left(4k^2+4k+1+1\right)+2\)
\(=2\left(2k+1\right)\left(2k^2+2k+1\right)+2⋮2\)
Lời giải:
a)
$a+b+c=0\Leftrightarrow (a+b+c)^2=0$
$\Leftrightarrow a^2+b^2+c^2+2(ab+bc+ac)=0$
$\Rightarrow ab+bc+ac=-\frac{a^2+b^2+c^2}{2}\leq 0$
Mà $a^2\geq 0$
Do đó: $a^2(ab+bc+ac)\leq 0$
$\Leftrightarrow a^3b+a^2bc+a^3c\leq 0$ (đpcm)
Dấu "=" xảy ra khi $a=0$
b)
Từ ĐKĐB \(\Rightarrow \left\{\begin{matrix} a+b=(3c+3)\\ 4ab=9c^2\end{matrix}\right.\)
Ta biết rằng $(a+b)^2=(a-b)^2+4ab\geq 4ab$
$\Leftrightarrow (3c+3)^2\geq 9c^2$
$\Leftrightarrow (c+1)^2\geq c^2$
$\Leftrightarrow 2c+1\geq 0\Leftrightarrow c\geq \frac{-1}{2}$ (đpcm)
Vậy.......
a)\(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2\)\(+2\left(ab^2c+abc^2+a^2bc\right)\)
=\(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\)
=\(a^2b^2+b^{2^2}c^2+c^2a^2+2abc.0\)
=\(a^2b^2+b^2c^2+c^2a^2\)
b) \(a+b+c=0\)=>\(\left(a+b+c\right)^2=0\)
<=>\(a^2+b^2+c^2+2\left(ab+bc+xa\right)=0\)
<=>\(a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
=>\(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)
<=>\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)\(=4\left(ab+bc+ca\right)^2\)
Do \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2\)
=>\(a^4+b^4+c^4+2\left(ab+bc+ca\right)^2\)\(=4\left(ab+bc+ca\right)^2\)
=>\(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
câu 2
a^4 + b^4 + c^4 + d^4 = 4abcd
<=> \(a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4+2a^2b^2-4abcd+2b^2d^2=0\)
<=> \(\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab-cd\right)^2=0\)
<=> \(\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\\ab=cd\end{matrix}\right.\Leftrightarrow a=b=c=d\)