Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé
bài 1 :
Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2
--> a + b + c = 2
Trong 1 tam giác thì ta có:
a < b + c
--> a + a < a + b + c
--> 2a < 2
--> a < 1
Tương tự ta có : b < 1, c < 1
Suy ra: (1 - a)(1 - b)(1 - c) > 0
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < -1 + ab + bc + ca
⇔ 2abc < -2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2
⇔ a² + b² + c² + 2abc < 2
--> đpcm
1, Ta có a^3+b^3+c^3=3abc
-> a^3+b^3+c^3+3a^2b+3ab^2=3abc+3a^2b+3ab^2
-> (a+b)3 + c^3 - 3ab(a+b+c)=0
-> (a+b+c). ((a+b)^2-(a+b).c+c^2)-3ab(a+b+c)=0
-> (a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)=0
Th1: a+b+c=0
->P= a+b/2 . b+c/2 . c+a/2
= (-c)(-a)(-b)/2=-1
TH2 a^2+b^2+c^2-ab-bc-ca=0
->2a^2+2b^2+2c^2-2ab-abc-2ac=0
->(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)=0
-> (a-b)^2+(a-c)^2+(b-c)^2=0
Mà (a-b)^2+(a-c)^2+(b-c)^2>= 0
Dấu = xảy ra (=)a-b=0
b-c=0
a-c=0
-> a=b=c
->P= 1+a/b+1+b/c+1+c/a=2+2+2= 8
GT không hợp lí
Theo định lí cosi 3 số
a^3+b^3+c^3>=3*canbacba(a^3*b^3*c^3)
<=> a^3+b^3+c^3>=3abc
dấu"=" khi a=b=c
trái Gt a,b,c đôi một khác nhau
theo đề ra ta có \(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Leftrightarrow2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=0\)
\(\Leftrightarrow a+b+c=0\)
ta có đề <=>\(\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(a+c\right)=3abc\)
mà a+b+c=0=>a+b=-c,b+c=-a,a+c=-b thay vào biểu thức trên
\(\Leftrightarrow-3\left(-a\right)\left(-b\right)\left(-c\right)=3abc\)
<=> \(3abc=3abc\)(hiển nhiên đúng)
vậy BĐT được chứng minh
đúng thì đúng nhưng cần sửa
\(2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=0\)
<=>\(\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}=0\)
<=>\(\frac{a+b+c}{abc}=0\)
do a,b,c khác 0 nên abc khác 0
=> a+b+c=0
=> a+b= -c
<=> \(\left(a+b\right)^3=\left(-c\right)^3\)
<=>\(a^3+b^3+3ab\left(a+b\right)=-c^3\)
<=> \(a^3+b^3-3abc=-c^3\)(do ab = -c)
<=> \(a^3+b^3+c^3=3abc\)(đpcm)
bạn nguyên x thị lan hương trình bày còn kém
Bài 2:
Ta có: \(a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(\Rightarrow a^3+b^3+3ab.\left(a+b\right)=-c^3\)
\(\Rightarrow a^3+b^3+3ab.\left(-c\right)=-c^3\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
(Còn nhiều cách nữa ,mình làm 1 cách nhé)
Kiểm tra lại đề bài nhé.
Với a = 2; b = 2; c = -1 thỏa mãn đề bài : (a+b+c)^2 = a^2 + b^2 + c^2
Nhưng không thỏa mãn đẳng thức cần chứng minh.