K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

Do a + b + c = 2016 suy ra: \(a=2016-\left(b+c\right);b=2016-\left(c+a\right);c=2016-\left(a+b\right)\)

Do đó:

\(S=\frac{2016-\left(b+c\right)}{b+c}+\frac{2016-\left(c+a\right)}{c+a}+\frac{2016-\left(a+b\right)}{a+b}\)

\(=\frac{2016}{b+c}-1+\frac{2016}{c+a}-1+\frac{2016}{a+b}-1\)

\(=\left(\frac{2016}{b+c}+\frac{2016}{c+a}+\frac{2016}{a+b}\right)-3\)

\(=2016\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(=2016.\frac{1}{6+2}-3=249\)

Vậy S = 249

9 tháng 12 2018

Sửa chữ S thành N giúp mình nhá! Không quên đánh chữ N cho lắm!

27 tháng 4 2016

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

\(\Rightarrow S=\left(\frac{a+b+c}{b+c}\right)+\left(\frac{a+b+c}{c+a}\right)+\left(\frac{a+b+c}{a+b}\right)-3\)

\(\Rightarrow S=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3=2016.\frac{1}{90}-3=\frac{97}{5}\)

Vậy....................

BACDH

     +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

BACDH

  +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

2 tháng 4 2017

\(a+b+c=2016\Rightarrow\left\{{}\begin{matrix}a=2016-\left(b+c\right)\\b=2016-\left(c+a\right)\\c=2016-\left(a+b\right)\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{2016-\left(b+c\right)}{b+c}+\dfrac{2016-\left(c+a\right)}{c+a}+\dfrac{2016-\left(a+b\right)}{a+b}\)\(\Rightarrow S=2016\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(\Rightarrow S=2016.\dfrac{1}{90}-3\)

\(\Rightarrow S=\dfrac{97}{2}\)

5 tháng 5 2017

Cho mik hỏi chút: làm sao có "-3" vậy bn?

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{2a-3b+c}{2\cdot6-3\cdot4+3}=\dfrac{1}{3}\)

Do đó: a=2; b=4/3; c=1

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a-3b+c}{2\cdot2-3\cdot3+4}=\dfrac{1}{-1}=-1\)

Do đó: a=-2; b=-3; c=-4

Ta có:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{7}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2009.\frac{1}{7}=287\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=287\)\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=287\)

\(\Rightarrow\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}=287-3=284\)

\(\Rightarrow S=284\)

22 tháng 2 2020

Cảm ơn nha OωO........Tặng You một ✔