Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/(a+b) + 1/(b+c) + 1/(c+a)=1/10
<=>(a+b+c)(1/a+b + 1/b+c + 1/c+a)=(a+b+c).1/10
<=>2001.(1/a+b + 1/b+c + 1/c+a)=200,1
<=>2001/a+b + 2001/b+c + 2001/c+a =200,1
<=>a+b+c/a+b + a+b+c/b+c + a+b+c/c+a=200,1
<=>a+b/a+b + c/a+b + b+c/b+c + a/b+c + c+a/c+a + b/c+a
<=>3+ c/a+b + a/b+c + b/c+a=200,1
<=>c/a+b + a/b+c + b/c+a=198,1
Ta có :
\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)-1-1-1\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)
Thay \(a+b+c=2001\)và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{10};\)có :
\(A=2001.\frac{1}{10}-3\)
\(=200,1-3\)
\(=197,1\)
Vậy \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=197,1\)
Ta có: \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2017\cdot\frac{1}{90}\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{2017}{90}\)
\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=\frac{2017}{90}\)
\(\Rightarrow A+3=\frac{2017}{90}\)
\(\Rightarrow S=\frac{2017}{90}-3=\frac{1747}{90}\)
từ giả thiết, ta có
\(\frac{1}{2017-a}+\frac{1}{2017-b}+\frac{1}{2017-c}=\frac{1}{90}\)
Mà \(S=\frac{a}{2017-a}+\frac{b}{2017-b}+\frac{c}{2017-c}=-3+\frac{2017}{2017-a}+\frac{2017}{2017-b}+\frac{2017}{2017-c}\)
=-3+\(2017\left(\frac{1}{2017-a}+\frac{1}{2017-b}+\frac{1}{2017-c}\right)=-3+\frac{2017}{90}=\frac{1747}{90}\)
vậy ...
^_^
=> (a+b+c).(1/a+b + 1/b+c +1/c+a) = 2017/90
=> a+b+c/a+b + a+b+c/b+c + a+b+c/c+a = 2017/90
=> 1 + c/a+b + 1 + a/b+c + 1 + b/c+a = 2017/90
=> a/b+c + b/c+a +c/a+b = 2017/90 - 3 = 1747/90
Vậy S = 1747/90
Tk mk nha
a+b+c = 2010 => a+b=2010-c ; b+c=2010-a ; c+a=2010-b
=> S = a/2010-a + b/2010-b + c/2010-c = 2010/2010-a - 1 + 2010/2010-b -1 + 2010/2010-c - 1
= 2010/b+c - 1 + 2010/c+a - 1 + 2010/a+b - 1
= 2010.(1/b+c + 1/c+a + 1/a+b) - 3
= 2010.1/3 - 3 = 667
Vậy S = 667
Tk mk nha
Ta có: \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2010\cdot\frac{1}{3}\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{2010}{3}\)
\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=\frac{2010}{3}\)
\(\Rightarrow S+3=\frac{2010}{3}\)
\(\Rightarrow S=\frac{2010}{3}-3=\frac{2001}{3}=667\)
\(S=\frac{2015-\left(a+b\right)}{a+b}+\frac{2015-\left(b+c\right)}{b+c}+\frac{2015-\left(a+c\right)}{a+c}=\frac{2015}{a+b}-\frac{a+b}{a+b}+\frac{2015}{b+c}-\frac{b+c}{b+c}+\frac{2015}{a+c}-\frac{a+c}{a+c}\)
\(S=2015.\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)-3=2015.\frac{1}{10}-3=\frac{1085}{10}\)
Ta có :
\(S+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\left(\frac{a}{b+c}+\frac{b+c}{b+c}\right)+\left(\frac{b}{a+c}+\frac{a+c}{a+c}\right)+\left(\frac{c}{a+b}+\frac{a+b}{a+b}\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(=2009.\frac{1}{7}=287\)
\(\Rightarrow S=287-3=284\)
Ta có: \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(3+S=\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{c+a}\right)+\left(1+\frac{c}{a+b}\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(=2007.\frac{1}{90}=\frac{223}{10}\Rightarrow S=\frac{223}{10}-3=\frac{193}{10}\)
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=>S+3=\frac{a}{b+c}+\frac{b+c}{b+c}+\frac{b}{c+a}+\frac{c+a}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{c}{a+b}\right)\)
\(=2007.\frac{1}{90}=\frac{223}{10}\)
\(=>S=\frac{223}{10}-\frac{30}{10}=\frac{193}{10}\)
\(S=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1-3\)
\(S=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)
\(S=\frac{2001}{b+c}+\frac{2001}{c+a}+\frac{2001}{a+b}-3\)
\(S=2001\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)
\(S=2001.\frac{1}{10}-3=\frac{1971}{10}\)