K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng BDT svacxơ ta có:

 \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{1}=9\)

Vì \(a+b+c=1\)

Dấu ''='' khi a=b=c

Học tốt.

14 tháng 4 2020

bạn làm theo cách bđt cosi giúp mình được không ạ?

8 tháng 8 2016

Áp dụng bđt Bunhiacopxki :

\(A^2=\left(1.\sqrt{2a+b+1}+1.\sqrt{2b+c+1}+1.\sqrt{2c+a+1}\right)^2\)

\(\le\left(1^2+1^2+1^2\right)\left(2a+b+1+2b+c+1+2c+a+1\right)\)

\(\Rightarrow A^2\le3.3\left(a+b+c+1\right)\)

\(\Rightarrow A^2\le36\Rightarrow A\le6\) (Vì A > 0)

Dấu "=" xảy ra \(\Leftrightarrow\begin{cases}\sqrt{2a+b+1}=\sqrt{2b+c+1}=\sqrt{2c+a+1}\\a+b+c=3\end{cases}\)

\(\Leftrightarrow a=b=c=1\)

Vậy A đạt giá trị lớn nhất bằng 6 tại a = b = c = 1

27 tháng 7 2017

hay

2 tháng 1 2018

post ít một thôi

16 tháng 5 2017

\(\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\)

Áp dụng BĐT AM-GM:\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{4}{a+b+2c}\)

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}\ge\dfrac{4\left(a+b+c\right)}{a+b+2c}-2\)(*)

Lại có: theo AM-GM:\(\sqrt{\dfrac{a+b}{2c}.1}\le\dfrac{1}{2}.\dfrac{a+b+2c}{2c}=\dfrac{a+b+2c}{4c}\)

\(\Rightarrow\sqrt{\dfrac{2c}{a+b}}\ge\dfrac{4c}{a+b+2c}\)(**)

từ (*) và (**),ta có:

\(VT\ge\dfrac{4\left(a+b+c\right)+4c}{a+b+2c}-2=\dfrac{4\left(a+b+2c\right)}{a+b+2c}-2=2\)(ĐpcM)

Dấu = xảy ra khi a=b=c>0

17 tháng 5 2017

wow thánh AM-GM cho e xin brain+chữ kí :v