\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2021

\(VT=\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{2}{\left(a+1\right)^2}+\dfrac{2}{\left(b+1\right)^2}+\dfrac{2}{\left(c+1\right)^2}\)

Mặt khác: 

\(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1.1\right)^2}\ge\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}=\dfrac{1}{1+ab}\)

Do đó:

\(VT\ge\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)

\(VT\ge\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{1}{1+\dfrac{1}{c}}+\dfrac{1}{1+\dfrac{1}{a}}+\dfrac{1}{1+\dfrac{1}{b}}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

26 tháng 8 2021

cho em hỏi một tí ạ 

Chộ \(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1.1\right)^2}\ge\dfrac{1}{\left(ab+1\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}\)

áp dụng công thức gì đây ạ

27 tháng 5 2018

Mashiro Shiina Akai Haruma GIÚP EM VỚI

13 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow VT\ge3\sqrt[3]{\left[\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\right]^4}\)

\(\Rightarrow VT\ge3\left(\sqrt[3]{1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}}\right)^4\) (1)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\\\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3\sqrt[3]{\dfrac{1}{a^2b^2c^2}}\end{matrix}\right.\)

\(\Rightarrow1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}\ge1+3\sqrt[3]{\dfrac{1}{abc}}+3\sqrt[3]{\dfrac{1}{a^2b^2c^2}}+\dfrac{1}{abc}\)

\(\Rightarrow1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}\ge\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^3\)

\(\Rightarrow3\left(\sqrt[3]{1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}}\right)^4\ge3\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^4\) (2)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\sqrt[3]{abc}\le\dfrac{abc+1+1}{3}=\dfrac{abc+2}{3}\)

\(\Rightarrow1+\dfrac{1}{\sqrt[3]{abc}}\ge1+\dfrac{3}{abc+2}\)

\(\Rightarrow3\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^4\ge3\left(1+\dfrac{3}{abc+2}\right)^4\) (3)

Từ (1) và (2) và (3)

\(\Rightarrow VT\ge3\left(1+\dfrac{3}{abc+2}\right)^4\)

\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge3\left(1+\dfrac{3}{abc+2}\right)^4\) ( đpcm )

20 tháng 9 2019

dấu = xảy ra

6 tháng 5 2017

Bài 2:

\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+2x\right)+\left(y^2+2y\right)=6\\\left(x^2+2x\right)\left(y^2+2y\right)=9\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+2x=a\\y^2+2y=b\end{matrix}\right.\) thì:\(\left\{{}\begin{matrix}a+b=6\\ab=9\end{matrix}\right.\)

Từ \(a+b=6\Rightarrow a=6-b\) thay vào \(ab=9\)

\(b\left(6-b\right)=9\Rightarrow-b^2+6b-9=0\)

\(\Rightarrow-\left(b-3\right)^2=0\Rightarrow b-3=0\Rightarrow b=3\)

Lại có: \(a=6-b=6-3=3\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+2x=3\\y^2+2y=3\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x+3\right)=0\\\left(y-1\right)\left(y+3\right)=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\\\left[{}\begin{matrix}y=1\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Bài 3:

\(BDT\Leftrightarrow\dfrac{1}{a^2\left(b+c\right)}+\dfrac{1}{b^2\left(c+a\right)}+\dfrac{1}{c^2\left(a+b\right)}\ge\dfrac{3}{2}\)

Áp dụng BĐT AM-GM ta có:

\(\dfrac{1}{a^2\left(b+c\right)}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{1}{a^2\left(b+c\right)}\cdot\dfrac{b+c}{4}}\)\(=2\sqrt{\dfrac{1}{4a^2}}=\dfrac{1}{a}\)

Tương tự cho 2 BĐT còn lại ta có:

\(\dfrac{1}{b^2\left(c+a\right)}+\dfrac{c+a}{4}\ge\dfrac{1}{b};\dfrac{1}{c^2\left(a+b\right)}+\dfrac{a+b}{4}\ge\dfrac{1}{c}\)

Cộng theo vế 3 BĐT trên ta có:

\(\Rightarrow VT+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Rightarrow VT+\dfrac{a+b+c}{2}\ge\dfrac{9}{a+b+c}\ge\dfrac{9}{3\sqrt[3]{abc}}\)

\(\Rightarrow VT+\dfrac{3\sqrt[3]{abc}}{2}\ge\dfrac{9}{3\sqrt[3]{abc}}\Rightarrow VT+\dfrac{3}{2}\ge3\left(abc=1\right)\)

\(\Rightarrow VT\ge\dfrac{3}{2}\). Tức là \(\dfrac{1}{a^2\left(b+c\right)}+\dfrac{1}{b^2\left(c+a\right)}+\dfrac{1}{c^2\left(a+b\right)}\ge\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

6 tháng 5 2017

Làm cho hoàn thiện luôn nè

1)ĐK:x>0

pt trở thành: x2+1+3x\(\sqrt{\dfrac{x^2+1}{x}}\)=10x

<=>\(\dfrac{x^2+1}{x}\)+3\(\sqrt{\dfrac{x^2+1}{x}}\)=10(*)

đặt y=\(\sqrt{\dfrac{x^2+1}{x}}\)(y>0)

(*)<=>y2+3y-10=0

<=>(y+5)(y-2)=0

<=>\(\left[{}\begin{matrix}y=-5\\y=2\end{matrix}\right.\)

vậy y =2(y>0)

<=>\(\sqrt{\dfrac{x^2+1}{x}}\)=2<=>x2+1=4x

<=>x2-4x+1=0<=>\(\left[{}\begin{matrix}x=\sqrt{3}+2\\x=2-\sqrt{3}\end{matrix}\right.\)

3) điều phải cm<=>\(\dfrac{1}{a^2\left(b+c\right)}+\dfrac{1}{b^2\left(a+c\right)}+\dfrac{1}{c^2\left(a+b\right)}\ge\dfrac{3}{2}\)đặt x=\(\dfrac{1}{a}\);y=\(\dfrac{1}{b}\);z=\(\dfrac{1}{c}\)

P<=>\(\dfrac{x^2yz}{y+z}+\dfrac{xy^2z}{x+z}+\dfrac{xyz^2}{x+y}\)

=\(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)(xyz=1)

đến đây ta có bất đẳng thức quen thuộc trên

A=\(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)

A+3=\(\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{x+z}+\dfrac{x+y+z}{x+y}\)

=(x+y+z)(\(\dfrac{1}{y+z}+\dfrac{1}{x+z}+\dfrac{1}{x+y}\))(**)

đặt m=x+y;n=y+z;p=x+z

(**)<=>\(\dfrac{m+n+p}{2}\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)\ge\dfrac{9}{2}\)(điều suy ra được từ bất đẳng thức cô-si cho 3 số)

=>A\(\ge\)\(\dfrac{3}{2}\)

=>P\(\ge\)\(\dfrac{3}{2}\)

15 tháng 1 2018

đặt ab=x, bc=y, ac=z

suy ra \(x^3+y^3+z^3=3xyz\)

pt thanh nhân tử \(\left(x+y+z\right)\left(x^2+y^2+z^2-xz-xy-yz\right)=0\)

do x,y,z>0suy ra x+y+z>0

nên suy ra \(x^2+y^2+z^2-xz-yz-xy=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xz-2xy-2yz=0\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

suy ra x=y=z

thế vào pt ta có dpcm

10 tháng 8 2018

\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3\left(a+b\right)}\)

\(=\dfrac{abc}{a^3\left(b+c\right)}+\dfrac{abc}{b^3\left(a+c\right)}+\dfrac{abc}{c^3\left(a+b\right)}\)

\(=\dfrac{bc}{a^2\left(b+c\right)}+\dfrac{ac}{b^2\left(a+c\right)}+\dfrac{ab}{c^2\left(a+b\right)}\)

\(=\dfrac{b^2c^2}{a^2bc\left(b+c\right)}+\dfrac{a^2c^2}{ab^2c\left(a+c\right)}+\dfrac{a^2b^2}{abc^2\left(a+b\right)}\)

\(Cauchy-Schwarz:\)

\(VT\ge\dfrac{\left(bc+ac+ab\right)^2}{abc\left[a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)\right]}\)

\(=\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\)

\(AM-GM:\)

\(ab+bc+ca\ge\sqrt[3]{\left(abc\right)^2}=3\)

\(\Rightarrow VT\ge\dfrac{ab+bc+ca}{2}\ge\dfrac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Lời giải khác:

Áp dụng BĐT AM-GM:

\(\frac{1}{a^3(b+c)}+\frac{a(b+c)}{4}\geq 2\sqrt{\frac{1}{4a^2}}=\frac{1}{a}=\frac{abc}{a}=bc\)

\(\frac{1}{b^3(a+c)}+\frac{b(a+c)}{4}\geq 2\sqrt{\frac{1}{4b^2}}=\frac{1}{b}=\frac{abc}{b}=ac\)

\(\frac{1}{c^3(a+b)}+\frac{c(a+b)}{4}\geq 2\sqrt{\frac{1}{4c^2}}=\frac{1}{c}=\frac{abc}{c}=ab\)

Cộng theo vế và rút gọn:

\(\Rightarrow \frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}+\frac{ab+bc+ac}{2}\ge ab+bc+ac\)

\(\Rightarrow \frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}\geq \frac{ab+bc+ac}{2}\geq \frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\) (AM_GM)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

23 tháng 11 2018

Áp dụng BĐT holder cho n bộ 3 số:

\(\left(\sum\dfrac{b^nc^n}{b+c}\right)\left[\sum\left(b+c\right)\right]\left(1+1+1\right)..\left(1+1+1\right)\ge\left(ab+bc+ca\right)^n\)

\(\Leftrightarrow VT\ge\dfrac{\left(ab+bc+ca\right)^n}{3^{n-2}.2.\left(a+b+c\right)}\ge\dfrac{3^{n-2}.3abc\left(a+b+c\right)}{3^{n-2}.2.\left(a+b+c\right)}=\dfrac{3}{2}\)

#Hint:(\(\left\{{}\begin{matrix}ab+bc+ca\ge3\\\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\end{matrix}\right.\))

BĐT holder thường dùng:

\(\left(a_1^m+a_2^m+...+a_k^m\right)\left(b_1^m+b_2^m+...+b_k^m\right)...\left(c_1^m+...+c_k^m\right)\ge\left(a_1b_1...c_1+a_2.b_2...c_2+...+a_k.b_k...c_k\right)^m\)

trong đó VT có m thừa số từ a đến c

20 tháng 11 2018

abc = 1 nưa nha

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0