Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{2}{\left(a+1\right)^2}+\dfrac{2}{\left(b+1\right)^2}+\dfrac{2}{\left(c+1\right)^2}\)
Mặt khác:
\(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1.1\right)^2}\ge\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}=\dfrac{1}{1+ab}\)
Do đó:
\(VT\ge\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)
\(VT\ge\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{1}{1+\dfrac{1}{c}}+\dfrac{1}{1+\dfrac{1}{a}}+\dfrac{1}{1+\dfrac{1}{b}}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
cho em hỏi một tí ạ
Chộ \(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1.1\right)^2}\ge\dfrac{1}{\left(ab+1\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}\)
áp dụng công thức gì đây ạ
Đẳng thức quen thuộc: \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\) và tương tự cho các mẫu số còn lại
Ta có:
\(\sum\dfrac{1}{a^2+1}=\sum\dfrac{1}{\left(a+b\right)\left(a+c\right)}=\dfrac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Mặt khác:
\(2\left(ab+bc+ca\right)\left(a+b+c\right)=\left[a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right]\left(a+b+c\right)\)
\(\ge\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\) (Bunhiacopxki)
\(\Rightarrow\sum\dfrac{1}{a^2+1}\ge\dfrac{\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\left(\dfrac{a}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\right)^2\)
\(=\left(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\right)^2\)
Do đó ta chỉ cần chứng minh:
\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{3}{2}\)
Đúng theo AM-GM:
\(\sum\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\sum\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow VT\ge3\sqrt[3]{\left[\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\right]^4}\)
\(\Rightarrow VT\ge3\left(\sqrt[3]{1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}}\right)^4\) (1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\\\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3\sqrt[3]{\dfrac{1}{a^2b^2c^2}}\end{matrix}\right.\)
\(\Rightarrow1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}\ge1+3\sqrt[3]{\dfrac{1}{abc}}+3\sqrt[3]{\dfrac{1}{a^2b^2c^2}}+\dfrac{1}{abc}\)
\(\Rightarrow1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}\ge\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^3\)
\(\Rightarrow3\left(\sqrt[3]{1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}}\right)^4\ge3\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^4\) (2)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt[3]{abc}\le\dfrac{abc+1+1}{3}=\dfrac{abc+2}{3}\)
\(\Rightarrow1+\dfrac{1}{\sqrt[3]{abc}}\ge1+\dfrac{3}{abc+2}\)
\(\Rightarrow3\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^4\ge3\left(1+\dfrac{3}{abc+2}\right)^4\) (3)
Từ (1) và (2) và (3)
\(\Rightarrow VT\ge3\left(1+\dfrac{3}{abc+2}\right)^4\)
\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge3\left(1+\dfrac{3}{abc+2}\right)^4\) ( đpcm )
Bài 2:
\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+2x\right)+\left(y^2+2y\right)=6\\\left(x^2+2x\right)\left(y^2+2y\right)=9\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2+2x=a\\y^2+2y=b\end{matrix}\right.\) thì:\(\left\{{}\begin{matrix}a+b=6\\ab=9\end{matrix}\right.\)
Từ \(a+b=6\Rightarrow a=6-b\) thay vào \(ab=9\)
\(b\left(6-b\right)=9\Rightarrow-b^2+6b-9=0\)
\(\Rightarrow-\left(b-3\right)^2=0\Rightarrow b-3=0\Rightarrow b=3\)
Lại có: \(a=6-b=6-3=3\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+2x=3\\y^2+2y=3\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x+3\right)=0\\\left(y-1\right)\left(y+3\right)=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\\\left[{}\begin{matrix}y=1\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Bài 3:
\(BDT\Leftrightarrow\dfrac{1}{a^2\left(b+c\right)}+\dfrac{1}{b^2\left(c+a\right)}+\dfrac{1}{c^2\left(a+b\right)}\ge\dfrac{3}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{1}{a^2\left(b+c\right)}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{1}{a^2\left(b+c\right)}\cdot\dfrac{b+c}{4}}\)\(=2\sqrt{\dfrac{1}{4a^2}}=\dfrac{1}{a}\)
Tương tự cho 2 BĐT còn lại ta có:
\(\dfrac{1}{b^2\left(c+a\right)}+\dfrac{c+a}{4}\ge\dfrac{1}{b};\dfrac{1}{c^2\left(a+b\right)}+\dfrac{a+b}{4}\ge\dfrac{1}{c}\)
Cộng theo vế 3 BĐT trên ta có:
\(\Rightarrow VT+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\Rightarrow VT+\dfrac{a+b+c}{2}\ge\dfrac{9}{a+b+c}\ge\dfrac{9}{3\sqrt[3]{abc}}\)
\(\Rightarrow VT+\dfrac{3\sqrt[3]{abc}}{2}\ge\dfrac{9}{3\sqrt[3]{abc}}\Rightarrow VT+\dfrac{3}{2}\ge3\left(abc=1\right)\)
\(\Rightarrow VT\ge\dfrac{3}{2}\). Tức là \(\dfrac{1}{a^2\left(b+c\right)}+\dfrac{1}{b^2\left(c+a\right)}+\dfrac{1}{c^2\left(a+b\right)}\ge\dfrac{3}{2}\)
Đẳng thức xảy ra khi \(a=b=c=1\)
Làm cho hoàn thiện luôn nè
1)ĐK:x>0
pt trở thành: x2+1+3x\(\sqrt{\dfrac{x^2+1}{x}}\)=10x
<=>\(\dfrac{x^2+1}{x}\)+3\(\sqrt{\dfrac{x^2+1}{x}}\)=10(*)
đặt y=\(\sqrt{\dfrac{x^2+1}{x}}\)(y>0)
(*)<=>y2+3y-10=0
<=>(y+5)(y-2)=0
<=>\(\left[{}\begin{matrix}y=-5\\y=2\end{matrix}\right.\)
vậy y =2(y>0)
<=>\(\sqrt{\dfrac{x^2+1}{x}}\)=2<=>x2+1=4x
<=>x2-4x+1=0<=>\(\left[{}\begin{matrix}x=\sqrt{3}+2\\x=2-\sqrt{3}\end{matrix}\right.\)
3) điều phải cm<=>\(\dfrac{1}{a^2\left(b+c\right)}+\dfrac{1}{b^2\left(a+c\right)}+\dfrac{1}{c^2\left(a+b\right)}\ge\dfrac{3}{2}\)đặt x=\(\dfrac{1}{a}\);y=\(\dfrac{1}{b}\);z=\(\dfrac{1}{c}\)
P<=>\(\dfrac{x^2yz}{y+z}+\dfrac{xy^2z}{x+z}+\dfrac{xyz^2}{x+y}\)
=\(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)(xyz=1)
đến đây ta có bất đẳng thức quen thuộc trên
A=\(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)
A+3=\(\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{x+z}+\dfrac{x+y+z}{x+y}\)
=(x+y+z)(\(\dfrac{1}{y+z}+\dfrac{1}{x+z}+\dfrac{1}{x+y}\))(**)
đặt m=x+y;n=y+z;p=x+z
(**)<=>\(\dfrac{m+n+p}{2}\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)\ge\dfrac{9}{2}\)(điều suy ra được từ bất đẳng thức cô-si cho 3 số)
=>A\(\ge\)\(\dfrac{3}{2}\)
=>P\(\ge\)\(\dfrac{3}{2}\)
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)
\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)
\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)
Cộng theo vế và rút gọn:
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Từ giả thiết:
\(a^2+b^2+c^2+a^2+b^2+c^2+2\left(ab+bc+ca\right)\le4\)
\(\Rightarrow a^2+b^2+c^2+ab+bc+ca\le2\)
Ta có:
\(\dfrac{ab+1}{\left(a+b\right)^2}=\dfrac{1}{2}.\dfrac{2ab+2}{\left(a+b\right)^2}\ge\dfrac{1}{2}.\dfrac{2ab+a^2+b^2+c^2+ab+bc+ca}{\left(a+b\right)^2}=\dfrac{1}{2}\dfrac{\left(a+b\right)^2+\left(a+c\right)\left(b+c\right)}{\left(a+b\right)^2}\)
\(=\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{\left(a+c\right)\left(b+c\right)}{\left(a+b\right)^2}\)
Tương tự và cộng lại, đồng thời đặt \(\left(a+b;b+c;c+a\right)=\left(x;y;z\right)\):
\(\Rightarrow VT\ge\dfrac{3}{2}+\dfrac{1}{2}\left(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\right)\ge\dfrac{3}{2}+\dfrac{1}{2}.3\sqrt[3]{\dfrac{yz.xz.xy}{x^2y^2z^2}}=3\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\Rightarrow xyz=1\)
\(P=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
Mashiro Shiina Akai Haruma GIÚP EM VỚI