K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

C/m BĐT phụ:   \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)  (*)      (x,y dương)

Ta có:   \(\left(x-y\right)^2\ge0\)       

\(\Leftrightarrow\)\(x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\)\(x^2+y^2\ge2xy\)

\(\Leftrightarrow\)\(x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)   (BĐT đã đc chứng minh)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y\)

ÁP dụng BĐT (*) ta có:

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-\left(a+b\right)}=\frac{4}{c}\)  (1)

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{p-b+p-c}=\frac{4}{2p-\left(b+c\right)}=\frac{4}{a}\)  (2)

\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{p-c+p-a}=\frac{4}{2p-\left(c+a\right)}=\frac{4}{b}\) (3)

Lấy (1); (2); (3) cộng theo vế ta được:

          \(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\)\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)  (đpcm)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=c\)

Khi đó  \(\Delta ABC\)là tam giác đều

1 tháng 4 2017

c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:

\(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)

14 tháng 3 2018

Do: \(a^2+b^2+c^2=1\text{ nen }a^2\le1,b^2\le1,c^2\le1\)

\(\Rightarrow a\ge-1;b\ge-1;c\ge-1\)

\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)

\(\Rightarrow1+a+b+c+ab+bc+ca+abc\ge0\)

Cần C/m:

\(1+a+b+c+ab+bc+ca\ge0\)

Ta có: 

\(1+a+b+c+ab+bc+ca\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ca+a+b+c\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2+2\left(a+b+c\right)+2ab+2bc+2ca+abc\ge0\)

\(\Leftrightarrow\left(a+b+c\right)^2+2\left(a+b+c\right)+1\ge0\)

\(\Leftrightarrow\left(a+b+c+1\right)^2\ge0\left(\text{luon dung}\right)\)

=> ĐPCM

14 tháng 3 2018

Bấm vào câu hỏi tương tự 

hoặc lên Học24h 

9 tháng 2 2016

a2+b2+c2=1a2+b2+c2=1

|a|;|b|;|c|≤1|a|;|b|;|c|≤1

−1≤a;b;c≤1−1≤a;b;c≤1

(a+1)(b+1)(c+1)≥0(a+1)(b+1)(c+1)≥0

ab+bc+ac+a+b+c+1+abc≥0(1)ab+bc+ac+a+b+c+1+abc≥0(1)

Mặt khác ta có :

(1+a+b+c)2≥0(1+a+b+c)2≥0

a2+b2+c2+2(ab+bc+ac)+2(a+b+c)+1≥0a2+b2+c2+2(ab+bc+ac)+2(a+b+c)+1≥0

2(a+b+c+ab+bc+ac+1)≥02(a+b+c+ab+bc+ac+1)≥0

(a+b+c+ab+bc+ac+1)≥0(2)(a+b+c+ab+bc+ac+1)≥0(2)

 

9 tháng 2 2016

trong nâng cao và phát triển có bài này thật đấy