K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2015

\(\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\Rightarrow2\left(ab+bc+ca\right)=-2009\)

\(2009^2=4\left(ab+bc+ca\right)^2=4\left(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right)\)\(=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)(1)

\(2009^2=\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(a^4+b^4+c^4=2009^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\) (2)

(1)(2) =>\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)=\frac{2009^2}{2}\)

\(\left(a+b+c\right)^2=0\)

\(\Leftrightarrow2ab+2bc+2ac=-2009\)

\(\Leftrightarrow ab+bc+ac=-\dfrac{2009}{2}\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{4036081}{4}\)

\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2=\dfrac{4036081}{4}\)

\(a^2+b^2+c^2=2009\)

nên \(a^4+b^4+c^4+2\left(a^2b^2+a^2c^2+b^2c^2\right)=4036081\)

\(\Leftrightarrow a^4+b^4+c^4=\dfrac{4036081}{2}\)

19 tháng 7 2018

Từ \(a+b+c=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow-7=ab+bc+ca\)\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=49\left(\text{vi` a+b+c=0}\right)\)

Ma tu \(a^2+b^2+c^2=14\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=14^2\)

\(\Leftrightarrow a^4+b^4+c^4=14^2-2\cdot49=....\)

1 tháng 8 2017

 Ngọc Anh Dũngo0oNguyễno0oHuy hoàng indonaca0o0 khùng mà 0o0Tình bạn vĩnh cửu Phương DungHacker Mũ Trắng

1 tháng 8 2017

Cái đề là  \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}???\)

23 tháng 2 2017

bn c/m điều ngược lại 

Vd: cho 0=<a,b,c=<4/3 và a+b+c=2. CMR a^2+b2+c^2=2