K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a+b+c=0 nên a+b=-c

a^3+b^3+c^3

=(a+b)^3-3ab(a+b)+c^3

=(a+b+c)(a^2+2ab+b^2-bc-ac+c^2)-3ab(a+b)

=-3ab(-c)=3abc

(2x-2023)^3+(2020-x)^3+(23-x)^3=0

=>(2020-x)^3+(23-x)^3+[-(2020-x+23-x)^3]=0

=>3(2020-x)(23-x)(2x-2023)=0

=>\(x\in\left\{2020;23;\dfrac{2023}{2}\right\}\)

11 tháng 7 2017

Giả sử a3 + b3 + c3 = 3abc, ta có :

a3 + b3 + c3 - 3abc = 0

Đưa về hằng đẳng thức mở rộng a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

<=> (a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 0

Mà a + b + c = 0

=> 0.(a2 + b2 + c2 - ab - bc - ca) = 0 (đúng)

Vậy , với a + b + c = 0 thì 

a3 + b3 + c3 = 3abc

11 tháng 7 2017

Do a+b+c=0 nên a+b=-c => -(a+b)=c; thay vào ta có:

\(a^3+b^3-\left(a+b\right)^3=a^3+b^3-\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(=-3a^2b-3ab^2=-\left(3ab\left(a+b\right)\right)\)

\(=-\left(-3abc\right)=3abc\)

Từ trên ta có: \(\left(x-3\right)^3+\left(2x-3\right)^3=\left(3\left(x-2\right)\right)^3=\left(3x-6\right)^3\)

\(=\left(x-3+2x-3\right)^3\)

Coi x-3 là a; 2x-3 là b thì 3x- 6 là c;

Mà a+b =c nên : \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)

\(=>3ab\left(a+b\right)=0=>3abc=0\)

\(=>\left\{{}\begin{matrix}x-3=0\\2x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)

CHÚC BẠN HỌC TỐT......

11 tháng 7 2017

Click tai đây để xem lời giải

15 tháng 12 2016

1) Có: \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=-c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3-3abc=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

2)Có: \(a+b-c=0\)

\(\Leftrightarrow a+b=c\)

\(\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3\)

\(\Leftrightarrow a^3+b^3+3abc=c^3\)

\(\Leftrightarrow a^3+b^3-c^3=-3abc\)

 

7 tháng 10 2020

hem biet

1 tháng 11 2016

bài 2 nè

a+b+c = 0

=>(a+b+c)^3 = 0

a^3 + b^3 + c^3 + 3(a+b)(b+c)(a+c) = 0

vì a+b = -c

a+c = -b

b+c = -a

thay vào => a^3 + b^3 + c^3 - 3abc = 0

=> a^3 + b^3 + c^3 = 3abc

1 tháng 11 2016

adsadfsa

6 tháng 10 2020

b) Ta có: \(a+b-c=0\)

\(\Leftrightarrow a+b=c\)

\(\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-c^3=0\)

\(\Leftrightarrow a^3+b^3-c^3=-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3-c^3=-3abc\)

=> đpcm

1 tháng 10 2017

Ta có: a+ b + c = 0

=> a+b = - c

a^3 + b^3 + c^3 = (a+b)3 - 3a2b - 3ab2 + c3

                               = ( -c)- 3a2b - 3ab+ c3

                               = (-c)+c-3ab( a+b)

                       =   - 3ab (-c) = 3abc ( đpcm)

31 tháng 7 2019

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)

\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c

31 tháng 7 2019

c) a + b + c = 0 suy ra a = -(b+c)

\(a^3+b^3+c^3=b^3+c^3-\left(b+c\right)^3\)

\(=b^3+c^3-b^3-3bc\left(b+c\right)-c^3\)

\(=3bc.\left[-\left(b+c\right)\right]=3abc\) (đpcm)